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Invited Talks

Finding a Subdivision of a Digraph
Frédéric Havet

MASCOTTE Project, CNRS-INRIA Sophia-Antipolis, France

We consider the following problem: Given a directed graph D, does it contain a subdi-
vision of a prescribed digraph F? We give a number of examples of polynomial instances,
several NP-completeness proofs as well as a number of conjectures and open problems.

This is joint work with J. Bang-Jensen and A.-K. Maia.

Extending partial representations of graphs
Jan Kratochvil

Charles University, Prague, Czech Republic

We study the computational complexity of the following general question: Given a graph
class defined by geometric representations of a certain type, and given a graph and a rep-
resentation of some of its vertices, can this be extended to a representation of the entire
graph? This falls into a general paradigm of extending a partial solution of a problem to
a full one which was studied in various connections (coloring, noncrossing drawing etc.).
In many cases the extension problem is provably harder which corresponds to a common
knowledge of architects - building from scratch is easier than restoring an old house. The
results we will report upon include extension of geometrically defined classes of intersection
graphs - interval graphs, permutation graphs, function graphs, and chordal graphs. Perhaps
slightly suprisingly we will see that in most cases the extension problem remains polynomial.

Playing for Time: 1101110 years of Combinatorial Game Theory
Richard J. Nowakowski

Dalhousie University, Halifax, Canada

Combinatorial Game Theory (CGT) is a new mathematical subject despite being a very
old human endeavour. I’ll give a brief, admittedly biased, overview of the ideas (such as Hot
games, incentives, atomic weight, flowers, miserable monoids), problems, and people, from
Bouton’s 1902 paper on NIM to the first comprehensive CGT text (soon-to-be-published by
Aaron Siegel). The talk will assume no specialist knowledge of CGT.

The Cycle Spectrum of Graphs
Dieter Rautenbach

Universität Ulm, Ulm, Germany

Cycles in graphs and especially their lengths are among the most well-studied topics in
graph theory. The set of all cycle lengths of a graph is known as its cycle spectrum. We
present recent results concerning

• the cycle spectrum of Hamiltonian graphs,

• the cycle spectrum of squares of graphs,

• a short proof of a versatile version of Fleischner’s well-known theorem, and Ramsey-
type results for the cycle spectrum.

The talk is based on joint work with S. Brandt, F. Joos, D. Meierling, K. Milans, J. Müttel,
F. Regen, T. Sasse, D. West.
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Graphs, Tournaments, Colouring and Containment
Paul Seymour

Princeton University, Princeton, USA

Some tournaments H are “heroes”; they have the property that all tournaments not
containing H as a subtournament have bounded chromatic number (colouring a tournament
means partitioning its vertex-set into transitive subsets). In joint work with eight authors,
we found all heroes explicitly. That was great fun, and it would be nice to find an analogue
for graphs instead of tournaments. The problem is too trivial for graphs, if we only exclude
one graph H ; but it becomes fun again if we exclude a finite set of graphs. The Gyarfas-
Sumner conjecture says that if we exclude a forest and a clique then chromatic number is
bounded. So what other combinations of excluded subgraphs will give bounded chromatic
(or cochromatic) number? It turns out (assuming the Gyarfas-Sumner conjecture) that for
any finite set S of graphs, the graphs not containing any member of S all have bounded
cochromatic number if and only if S contains a complete multipartite graph, the complement
of a complete multipartite graph, a forest, and the complement of a forest. Proving this led
us to the following: for every complete multipartite graph H , and every disjoint union of
cliques J , there is a number n with the following property. For every graph G, if G contains
neither of H, J as an induced subgraph, then V (G) can be partitioned into two sets such
that the first contains no n-vertex clique and the second no n-vertex stable set. In turn,
this led us (with Alex Scott) to the following stronger result. Let H be the disjoint union
of H1, H2, and let J be obtained from the disjoint union of J1, J2 by making every vertex
of J1 adjacent to every vertex of J2. Then there is a number n such that for every graph G
containing neither of H, J as an induced subgraph, V (G) can be partitioned into n sets such
that for each of them, say X , one of H1, H2, J1, J2 is not contained in G|X . How about a
tournament analogue of this? It exists, and the same (short) proof works; and this leads to
a short proof of the most difficult result of the heroes paper that we started with. There are
a number of other related results and open questions. Joint work with Maria Chudnovsky.
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On average fault-tolerance in product graphs
E. Abajo, R. M. Casablanca, A. Diánez, and P. García-Vázquez

Department of Applied Mathematics I, University of Seville, Spain

Extended Abstract

Let G be a graph with vertex set V = V (G) and edge set E = E(G). The cardinalities
of these sets are denoted by |V (G)| = n and |E(G)| = e. Let u and v be two distinct
vertices of G. A path from u to v, also called an uv-path in G, is a subgraph P with vertex
set V (P ) = {u = x0, x1, . . . , xr = v} and it is usually denoted by P : x0x1 · · ·xr. Two
uv-paths P and Q are said to be internally disjoint if V (P ) ∩ V (Q) = {u, v}. A cycle in
G is a path C : x0x1 · · ·xr such that x0 = xr. The girth of G, denoted by g(G), is the
length of a shortest cycle in G, and if G contains no cycles, then g(G) = ∞. The set of
adjacent vertices to v ∈ V (G) is denoted by NG(v). The degree of v is dG(v) = |NG(v)|,
whereas δ(G) = minv∈V (G) dG(v) and d(G) = 1

n

∑

v∈V (G) dG(v) = 2e/n are the minimum
degree and the average degree of G, respectively. The connectivity κ(G) of a graph G is
the smallest number of vertices whose deletion from G produces a disconnected or a trivial
graph. Whitney [10] proved in 1932 that a graph G is r-connected, that is, κ(G) ≥ r, if and
only if every pair of vertices is connected by r internally disjoint paths. From this result,
we know that the connectivity κG(u, v) between two distinct vertices u and v in G is the
maximum number of pairwise internally disjoint uv-paths in G. In this way, the connectivity
of a graph can be seen as κ(G) = minu,v∈V (G) κG(u, v). In [10] the author also showed that
κ(G) ≤ δ(G). The graph G is maximally connected if the previous bound is attained, that
is, if κ(G) = δ(G).

For a graph G of order n, the average connectivity κ(G) is defined as the average of the
connectivities between all pairs of vertices of G, that is,

κ(G) =
1

(

n
2

)

∑

u,v∈V (G)

κG(u, v).

In order to avoid fractions, we also consider the total connectivity K(G) of G, defined
as K(G) =

∑

u,v∈V (G)

κG(u, v). While the connectivity is the minimum number of vertices

whose removal separates at least one connected pair of vertices, the average connectivity is a
measure for the expected number of vertices that have to be removed to separate a randomly
chosen pair of vertices.

It is well known that most networks can be modeled by a graph G = (V,E). The best
known measure of reliability of a graph is its connectivity, defined above. As the connectivity
is a worst-case measure, it does not always reflect what happens throughout the graph. For
example, a tree and the graph obtained by appending an end-vertex to a complete graph both
have connectivity 1. Nevertheless, for large order the latter graph is far more reliable than
the former. Interest in the vulnerability and reliability of networks such as transportation
and communication networks, has given rise to a host of other measures of reliability, see
for example [1]. In this paper we pay attention to a measure for the reliability of a graph,
the average connectivity, introduced by Beineke, Oellermann and Pippert [3].

There is a lot of research on the connectivity of a graph (see [8]). Many works provide
sufficient conditions for a graph to be maximally connected or super connected [4]. Others
study the maximal connectivity in networks that are constructed from graph generators, as
cartesian product graphs [5, 9] or permutation graphs [2, 7].

There are two excellent papers where the average connectivity has been investigated.
In the first one, Beineke, Oellermann and Pippert [3] find upper and lower bounds on the
average connectivity of a graph G in terms of its order n and its average degree d(G). In the
second one, Dankelmann and Oellermann [6] obtain sharp upper bounds for some families
of graphs. We study the average connectivity of the socalled strong product of graphs.
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For a large system, configuration processing is one of the most tedious and time-consuming
parts of the analysis. Different methods have been proposed for configuration processing and
data generation. Some of them are structural models which can be seen as the product graph
of two given graphs, known as generators. Many properties of structural models can be ob-
tained by considering the properties of their generators. In this sense, a usual objective
in network design is the extension of a given interconnection system to a larger and fault-
tolerant one so that the communication delay among nodes of the new network is small
enough. To achieve this goal, many works in Graph Theory have studied fault-tolerant
properties of some products of graphs.

We focus on the strong product G1 ⊠ G2 of two graphs G1 and G2 is defined on the
cartesian product of the vertex sets of the generators, so that two distinct vertices (x1, x2)
and (y1, y2) of G1 ⊠ G2 are adjacent if x1 = y1 and x2y2 ∈ E(G2), or x1y1 ∈ E(G1) and
x2 = y2, or x1y1 ∈ E(G1) and x2y2 ∈ E(G2).

In this work we provide, by a constructive method, a lower bound on the average con-
nectivity of the strong product G1 ⊠ G2 of two connected graphs G1 and G2 of girth at
least 5. As a consequence, we prove that the strong product of two maximally connected
graphs of girth at least 5 is maximally connected, and also, that κ(G1 ⊠G2) = d(G1 ⊠G2)
if κ(Gi) = d(Gi), i = 1, 2.
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Excluding 4-wheels
Pierre Aboulker

LIAFA, Université Paris Diderot, France

Extended Abstract

A k−wheel is a graph formed by a cycle C, called the rim, and a vertex u (not in V (C)),
called the center, such that u has at least k neighbors in C.

We say that a graph G contains a graph H if H is isomorphic to a subgraph of G. If a
graph G does not contain a graph H we say that G is H-free. If H is a class of graphs we
say that a graph G is H-free if for any H ∈ H, G is H-free. We say that two non-adjacent
vertices u and v are twins if N(u) = N(v).

In [4] Thomassen and Toft proved the following result (an alternative proof is given in
[1]).

Theorem 1 If G is a 3-wheel-free graph, then either it contains a pair of twins or it contains
a vertex of degree at most 2.

From this Theorem they easily get the following corollary that settles a conjecture pro-
posed by Toft in [5].

Corollary 2 If G is a 3-wheel-free graph, then G is 3-colorable.

In [6] Turner proved the following general result on k-wheel-free graphs for any k ≥ 4.

Theorem 3 For any integer k ≥ 4, if G is a k-wheel-free graph, then G contains a vertex
of degree at most k.

Which has the following corollary :

Corollary 4 For any integer k ≥ 4, if G is a k-wheel-free graph, then G is (k+1)-colorable.

In this paper we extend Theorem 1 and strengthen Theorem 3 for k = 4 by proving the
following result.

Theorem 5 If G is a 4-wheel-free graph, then either it contains a pair of twins or it contains
a vertex of degree at most 3.

Which implies the following :

Corollary 6 If G is a 4-wheel-free graph, then G is 4-colorable.

We conjecture the following :

Conjecture 7 If G is a k-wheel-free graph, then it is k-colorable.

Regarding this subject, one can also find some extremal result on 3-wheel-free graphs
in [3] and on 4-wheel-free graphs in [2]. In [1], the class of graphs that does not contain
2-wheels as induced subgraphs is studied. The authors give a structure theorem for this
class using the class of 2-wheel-free graph as a basic class.
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Extended Abstract

Given a graph G, a vertex coloring of the graph is called proper if for every pair of adjacent
vertices x, y the color assigned to x is different from the color assigned to y. The chromatic
number of G denoted by χ(G) is the minimum number of colors needed to properly color
the graph. Computing the chromatic number of a graph is NP-complete. Even to decide
if a planar graph is 3-colorable is NP-complete. In addition, it is difficult to approximate
in polynomial time the chromatic number of a graph up to a factor n1−ǫ unless P = NP .
The maximum size of a clique of G, denoted by ω(G), is a lower bound on χ(G). Indeed,
the vertices of a clique must have distinct colors. Does it exist a function f linking the
chromatic number of a graph with its maximal clique? Erdős proved that there are some
graphs with arbitrarily large chromatic number and arbitrarily large girth [1], i.e. such that
ω(G) = 2. Hence such a function f does not exist for every graph. In the following we
will only consider classes closed under induced subgraph. A class of graphs C is said to be
χ-bounded if there exists a function f such that for every graph G ∈ C, χ(G) ≤ f(ω(G)).
The notion of χ-boundedness was introduced by Gyárfás in [2] and lots of research has been
done in this domain (see [4] for a survey).

It is interesting to determine which class of graphs has to be forbidden in order to ensure
χ-boundedness.

First consider the case when a unique graph H is forbidden as an induced subgraph.
For instance, Gyárfás proved that for every k, the class of graphs with no induced k-stars
is χ-bounded, as the class of graphs with no induced paths of length k. Since there exist
graphs with arbitrarily large girth and chromatic number, if the graph H contains a cycle,
the class is not χ-bounded. And Gyárfás conjectured in [2] that it is a sufficient condition,
i.e. that the class of graphs with no induced subgraph H is χ-bounded if and only if H is a
forest.

Secondly, we can forbid the induced subdivision of a graph H . The graph H is said to be
forbidden as an induced topological minor. For instance, a graph with no induced subdivision
of a triangle has a bounded chromatic number. Indeed such a graph is cycle-free, i.e. is a
forest.

In this paper we consider a third type of forbidden structures which combines the two
first ones. The forbidden structure is a graph H for which some edges can be subdivided
but some cannot. Such a forbidden structure is sometimes called an induced semi-topological
minor. To our knowledge, the only known χ-boundedness result about a class of graph
defined by forbidding an induced semi-topoligical minor is the following. In [3], Trotignon
and Vušković proved that the class of graphs with no induced cycle with a unique chord
satisfies χ(G) = max(ω(G), 3). Forbidding cycles with a unique chord is equivalent to forbid
a diamond (a diamond is a C4 with a diagonal) such that every edge but the diagonal can
be subdivided.

A k-cycle is an induced cycle with exactly k chords. Our results extend the results of
[3] since we study the class of graphs with no 2-cycle (Theorem 1), and with no 3-cycle
(Theorem 2).

Theorem 1 A graph with no 2-cycle has chromatic number at most 6.

Actually we prove a slightly stronger result. Indeed, there are types of 2-cycles detailled
on Fig. 1. Nevertheless, we prove that the class of graphs with no cycle of type (a) and no
cycle of type (b) has chromatic number at most 6. Note that the maximum clique number
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for graphs with no 2-cycle is at most 3. Indeed, if there is a K4, the graph of Fig. 1(b)
appears.

The proof of this result is a mix of two methods. First we prove that some structures
can be avoided with some decomposition steps. For instance the graph can be considered as
diamond-free. It simplifies the structure of the graph we study.

(a) (b) (c)

Figure 1: The three types of 2-cycle. Thin edges can be subdivided but not bigger ones.

The second step is somehow an induction step on the number of chords. Given a vertex
x, the k-th level of x is the set of vertices at distance exactly k from x. If a connected graph
G has chromatic number χ and x is a vertex of the graph, one of these levels has chromatic
number at least ⌈χ/2⌉. Therefore if χ(G) ≥ 7, then [3] ensures that there exists an integer
k such that the k-th neighborhood contains a 1-cycle. This 1-cycle can be transformed into
a 2-cycle using the level partition.

Then we also extend this result to graphs with no 3-cycle

Theorem 2 There exists a constant c such that every graph G with no 3-cycle satisfies:

χ(G) ≤ c · ω(G).

The proof of Theorem 2 follows the same scheme as proof of Theorem 1 except this it is
more technical. The results of Trotignon and Vušković [3] and our results lead to this more
general question.

Conjecture 3 Let k be an integer. Is the class of graphs with no k-cycle χ-bounded?
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Clock-free graphs and k-clock-free graphs of high girth
Pierre Aboulker, Zhentao Li, and Stéphan Thomassé
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Extended Abstract

A clock is a graph consisting of a (chordless) cycle C and a vertex with exactly two
neighbours on C (see Figure 2). We study the class of clock-free graphs, graphs without
induced clocks, and consider a conjecture of Trotignon.

Conjecture 1 [5] Every clock-free graph which contains no K3 and no cube has a vertex of
degree at most 2.

propeller clock

thetacube

Figure 2: A cube, a theta, a propeller and a clock

We answer this conjecture in the positive for graphs of high girth. Note that graphs with
girth at least 5 contain no cube.

Theorem 2 Every 2-connected clock-free graph of girth at least 10 has a vertex of degree at
most 2.

This conjecture generalizes recent theorems for two classes of graphs.
This first theorem arises from the study of minimally k-connected graphs (a k-connected

graph where the removal of any edge disconnects the graph). The class of chordless graphs
contain all minimally 2-connected graphs and their subgraphs [2, 3]. Graphs in this class
always contain at least two vertices of degree 2 (when the graph has at least two vertices)
[2, 3]. Aboulker, Radovanović, Trotignon and Vušković[1] showed an analogous result for
vertex connectivity. They show propeller-free graphs (graphs that do not contain an induced
cycle C and a vertex with at least two neighbours on C as a subgraph) also contain a degree
2 vetex.

Theorem 3 [1] Every propeller-free graph contains a vertex of degree at most 2.
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The second theorem Conjecture 1 generalizes concerns graphs excluding an induced theta,
a subdivision of K2,3.

Theorem 4 [4] Every graph which contains no induced theta, no K3 and no cube has a
vertex of degree at most 2.

Note that a clock is both a propeller and a theta (in triangle free graphs) and that a
cube contains a propeller. Thus, Conjecture 1 generalizes both Theorem 3 and 4.

We further extend our result to graphs without k-clocks, an induced subgraph consisting
of a cycle C and a path with k edges between two vertices of C.

3−clock2−clock

also called a clock

4−clock

Figure 3: k-clocks

Theorem 5 For every k ≥ 2, every k-clock-free graphs of girth at least 6k has a vertex of
degree at most 2.
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Extended Abstract

A bipartite graph G is balanced if and only if every hole of G has length 0 (mod 4), where
a hole is a chordless cycle of length at least 4. These graphs came from balanced matrices.
Balanced matrices have been studied extensively in literature, due to their important poly-
hedral properties, for a survey see [4]. A signed bipartite graph is a bipartite graph, together
with an assignment of weights +1,−1 to the edges of G. A signed bipartite graph is balanced
if the weight of every hole H of G, i.e. the sum of the weights of the edges of H , is 0 (mod 4)
A bipartite graph is balanceable if there exists a signing of its edges, i.e. an assignment of
weights +1,−1 to the edges of the graphs, such that the resulting signed bipartite graph is
balanced.

The following conjecture is the last unresolved conjecture about balanced (balanceable)
bipartite graphs in Cornuéjols’ book [7] (it is Conjecture 6.11). Note that Conjectures 9.23,
9.28 and 9.29 from [7] have been resolved by Chudnovsky and Seymour in [2].

Conjecture 1 (Conforti and Rao [6]) Every balanced bipartite graph contains an edge
that is not the unique chord of a cycle.

In other words, every balanced bipartite graph contains an edge whose removal leaves
the graph balanced. This is not true if the graph is balanceable, as shown by R10, that is the
graph defined by the cycle x1x2 . . . x10x1 (of length 10) with chords xixi+5, 1 ≤ i ≤ 5. Graph
R10 is cubic and balanceable (a proper signing of R10 is to assign weight +1 to the edges
of the cycle x1x2 . . . x10x1 and −1 to the chords), but not balanced (x1x2x3x4x5x6 is a hole
of length 6). Note that in R10 every edge is the unique chord of some cycle. Conjecture 1
generalizes to balanceable graphs in the following way.

Conjecture 2 (Conforti, Cornuéjols and Vušković [4]) In a balanceable bipartite graph
either every edge belongs to some R10 or there is an edge that is not the unique chord of a
cycle.

A bipartite graph is linear balanceable if it is balanceable and does not contain a 4-
hole (i.e. a hole of length 4). A graph G is subcubic if ∆(G) ≤ 3. We will prove [1] that
conjectures 1 and 2 hold when restricted to linear balanceable graphs

Theorem 3 Let G be a linear balanceable graph that has at least one edge. Then there is
an edge of G that is not the unique chord of a cycle.

For the subcubic case, we proved a result conjectured by Morris, Spiga and Webb [8],
stating that every cubic balanced bipartite graph contains a pair of vertices with the same
neighborhood.

Theorem 4 If G is a cubic balanceable graph that is not R10, then G has a pair of twins
none of whose neighbors is a cut vertex of G.

As it was noticed in [8] (for the special case of cubic balanced graphs), Theorem 4 implies
the following.
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Corollary 5 Let G be a cubic balanceable graph. Then the following hold:

(i) G has girth four.

(ii) If G 6= R10 then G contains an edge that is not the unique chord of a cycle.

(iii) G is not planar.

This prove the conjectures 1 and 2. (Note that if there is a vertex of degree at most 2
the result is clear).

Our proofs use the following decomposition theorem, obtained mixing results from Con-
forti, Cornuéjols, Kapoor and Vušković [3], Conforti and Rao [5] and Yannakakis [11].

Theorem 6 Let G be a connected balanceable graph.

• If G is 4-hole-free, then G is basic, or has a 2-join, a 6-join or a star cutset.

• If ∆(G) ≤ 3, then G is basic or is R10, or has a 2-join, a 6-join or a star cutset.

We use Theorem 6 in our proof of Conforti and Rao Conjecture in the subcubic case,
instead of Seymour’s decomposition theorem for regular bipartite graphs [9] because we have
only to check whether three cutsets (2-join, 6-join and star cutset) go through our induction
hypothesis, whereas if we used the decomposition theorem in [9] we would have to check five
cutsets (1-join, 2-join, 6-join, N-join and M-join, for an explanation see [10]). Furthermore,
2-joins and 6-joins in graphs with no star cutset have special properties which are very useful
for pushing the induction hypothesis through them.
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Extended Abstract

The motivation for this paper is a problem that arises from the study of tension and
compression forces applied on frameworks in the Euclidian space Rd. A d-framework is a
graph G = (V,E) and an embedding ρ of G in Rd. The reader should think of a framework
as an actual physical system where edges are either straight bars or cables and vertices are
articulated joints.

A stress on a framework (G, ρ) is a function ω : V × V → R such that ∀u ∈ V ,
∑

{u,v}∈E

ω({u, v})(ρ(v)− ρ(u)) = 0.

Stress corresponds to some notion of equilibrium for the associated physical system. Each
vertex is affected by tension and compression forces created by the bars and cables. ω({u, v})
can be thought of as the magnitude of such force per unit length, with ω({u, v}) < 0 for a
cable tension and ω({u, v}) > 0 for a bar compression. A stress is a state of the system where
these forces cancel each other at every vertex. We can see that every framework admits a
trivial stress where ω is identically zero. A d-framework admitting only the trivial stress is
called d-stress free.

To make this notion independent of the embedding of G, we introduce the following. A
graph G is generically d-stress free if the set of all d-stress free embeddings of G in Rd is open
and dense in the set of all its embeddings (i.e. every stressed embedding of G is arbitrary
close to a stress free embedding).

This notion has been first used on graphs coming from 1-skeletons of 3-dimensional
polytopes [3, 4, 5, 9], which are planar by Steiniz’s theorem. Gluck generalized the results
on 3-dimensional polytopes to the whole class of planar graphs.

Theorem 1 (Gluck, 1975, [2]) Planar graph are generically 3-stress free.

Nevo proved that we can generalize Theorem 1 for K5-minor free graphs, and extended the
result as follows.

Theorem 2 (Nevo, 2007, [1]) For 2 ≤ r ≤ 6, every Kr-minor free graph is generically
(r − 2)-stress free.

He conjectured this to hold also for r = 7. We answer positively to Nevo’s conjecture.

Theorem 3 Every K7-minor free graph is generically 5-stress free.

A result of Whiteley [10] was used to derive Theorem 2 from a consideration on graphs
whose every edge belongs to at least k triangles, as follows.

Theorem 4 (Nevo, 2007, [1]) If G has an edge and each edge belongs to at least four
triangles, then either G has a K6-minor, or G is a clique-sum over Kr, for r ≤ 4.

We strengthened Theorem 4 for K6-minor free graphs and extend it for K7-minor free graphs
as such.

Theorem 5 Any K6-minor free (resp. K7-minor free) graph G has a vertex u such that
deg(u) ≤ 7 (resp. deg(u) ≤ 9) and a vertex v ∈ N(u) such that uv belongs to at most three
(resp. four) triangles.
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We use it to deduce the following corollary.

Corollary 6 If G has an edge and each edge belongs to at least five triangles, then G has a
K7-minor.

The proof relies heavily on the fact that any K6-minor free (resp. K7-minor free) contains
at most 4n − 10 (resp. 5n − 15) edges by Mader’s theorem [6]. Moreover any generically
d-stress free graph has at most dn−

(

d+1
2

)

edges. Nevo pointed out that Theorem 2 cannot
be extended to the case r = 8 because of K2,2,2,2,2 which is K8-minor free but contains
too many edges to be generically 6-stress free. Jørgensen [7] proved that any K8-minor free
graph has at most 6n − 21 edges or is constructed iteratively by taking disjoint copies of
K2,2,2,2,2 and identifying cliques of size five. We show the following.

Theorem 7 Every K8 and K2,2,2,2,2-minor free graph is generically 6-stress free.

The proof relies on a similar result to Corollary 6 given by the following theorem.

Theorem 8 If G has an edge and each edge belongs to at least 6 triangles, then G has a
K8-minor or a K2,2,2,2,2-minor.

Song and Thomas [8] proved that the only K9-minor free graph with at least 7n−27 edges
are the graphs constructed iteratively by taking disjoint copies of K1,2,2,2,2,2 and identifying
cliques of size six, and the graph K2,2,2,3,3. This leads us to the following conjecture.

Conjecture 9 Every K9, K2,2,2,2,2,1 and K2,2,2,3,3-minor free graph is generically 7-stress
free.
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Extended Abstract

Replacing the chromatic number by the dichromatic number introduced by Neumann-Lara
[6] we generalize the notion of perfectness of a graph to digraphs. We give a characterization
of perfect digraphs using the notion of perfect graphs. Applying the Strong Perfect Graph
Theorem [3], this yields a characterization of perfect digraphs by a set of forbidden induced
subdigraphs. Furthermore, modifying a recent proof of Bang-Jensen et al. [1] we show that
the recognition of perfect digraphs is co-NP-complete.

First we fix some notation. We only consider digraphs without loops. The clique number
ω(D) of a digraph D is the size of the largest bidirectionally complete subdigraph of D. The
dichromatic number χ(D) of D is the smallest cardinality |C| of a colour set C, so that it
is possible to assign a colour from C to each vertex of D such that for every colour c ∈ C
the subdigraph induced by the vertices coloured with c is acyclic, i.e. it does not contain a
directed cycle. The clique number is an obvious lower bound for the dichromatic number.
D is called perfect if, for any induced subdigraph H of D, χ(H) = ω(H).

An (undirected) graph G = (V,E) can be considered as the symmetric digraph DG =
(V,A) with A = {(v, w), (w, v) | vw ∈ E}. In the following, we will not distinguish between
G and DG. In this way, the dichromatic number of a graph G is its chromatic number χ(G),
the clique number of G is its usual clique number ω(G), and G is perfect as a digraph if
and only if G is perfect as a graph. For us, an edge vw in a digraph D = (V,A) is the set
{(v, w), (w, v)} ⊆ A of two antiparallel arcs, and a single arc in D is an arc (v, w) ∈ A with
(w, v) /∈ A. The oriented part O(D) of a digraph D = (V,A) is the digraph (V,A1) where
A1 is the set of all single arcs of D, and the symmetric part S(D) of D is the digraph (V,A2)
where A2 is the union of all edges of D. Obviously, S(D) is a graph, and by definition we
have

Lemma 1 For any digraph D, ω(D) = ω(S(D)).

An odd hole is an undirected cycle Cn with an odd number n ≥ 5 of vertices. An odd
antihole is the complement of an odd hole (without loops). A filled odd hole/antihole is a
digraph H , so that S(H) is an odd hole/antihole. For n ≥ 3, the directed cycle on n vertices
is denoted by ~Cn. Furthermore, for a digraph D = (V,A) and V ′ ⊆ V , by D[V ′] we denote
the subdigraph of D induced by the vertices of V ′.

Theorem 2 A digraph D = (V,A) is perfect if and only if S(D) is perfect and D does not
contain any directed cycle ~Cn with n ≥ 3 as induced subdigraph.

Proof. Proof. Assume S(D) is not perfect. Then there is an induced subgraph H = (V ′, E′)
of S(D) with ω(H) < χ(H). Since S(D[V ′]) = H , we conclude by Lemma 1,

ω(D[V ′]) = ω(S(D[V ′])) = ω(H) < χ(H) = χ(S(D[V ′])) ≤ χ(D[V ′]),

therefore D is not perfect. If D contains a directed cycle ~Cn with n ≥ 3 as induced subdi-
graph, then D is obviously not perfect, since ω(~Cn) = 1 < 2 = χ(~Cn).

Now assume that S(D) is perfect but D is not perfect. It suffices to show that D contains
an induced directed cycle of length at least 3. Let H = (V ′, A′) be an induced subdigraph
of D such that ω(H) < χ(H). Then there is a proper colouring of S(H) = S(D)[V ′] with
ω(S(H)) colours, i.e., by Lemma 1, with ω(H) colours. This cannot be a feasible colouring
for the digraph H . Hence there is a (not necessarily induced) monochromatic directed cycle
~Cn with n ≥ 3 in O(H). Let C be such a cycle of minimal length. C cannot have a chord

20



that is an edge vw, since both terminal vertices v and w of vw are coloured in distinct
colours. By minimality, C does not have a chord that is a single arc. Therefore, C is an
induced directed cycle (of length at least 3) in H , and thus in D. �

Corollary 3 If D is a perfect digraph, then any feasible colouring of S(D) is also a feasible
colouring for D.

By the Strong Perfect Graph Theorem [3] and Theorem 2 we obtain:

Corollary 4 A digraph D = (V,A) is perfect if and only if it does neither contain a filled
odd hole, nor a filled odd antihole, nor a directed cycle ~Cn with n ≥ 3 as induced subdigraph.

Corollary 3 and the fact that k-colouring of perfect graphs is in P (see [4]) implies the
following.

Corollary 5 k-colouring of perfect digraphs is in P for any k ≥ 1.

To test whether D does not contain an induced directed cycle ~Cn, n ≥ 3, is a co-NP-
complete problem by a recent result of Bang-Jensen et al. ([1], Theorem 11). The proof of
Bang-Jensen et al. can be easily modified to prove the following.

Theorem 6 The recognition of perfect digraphs is co-NP-complete.

The preceding result can be obtained by a reduction of 3-SAT to recognition of non-
perfect digraphs. This result is in contrast to the result of Chudnovsky et al. [2] which,
together with the Strong Perfect Graph Theorem [3], states that the recognition of perfect
graphs is in P .

Note that the perfectness of digraphs does not behave as well as the perfectness of graphs
in a second aspect: there is no analogon to Lovasz’ Weak Perfect Graph Theorem [5]. A
digraph may be perfect but its complement may be not perfect. An easy instance of this
type is the directed 4-cycle ~C4, which is not perfect, and its complement H , which is perfect.
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Extended Abstract

All graphs in this work are undirected, simple and loopless. Given a connected graph
G = (V,E), the closed interval I[u, v] of any two vertices u, v ∈ V is the set of vertices
that belong to some u-v geodesic of G, i.e. some shortest (u, v)-path. For any S ⊆ V , let
I[S] =

⋃

u,v∈S I[u, v]. A subset S ⊆ V is (geodesically) convex if I[S] = S. Given a subset
S ⊆ V , the convex hull Ih[S] of S is the smallest convex set that contains S. We say that
a vertex v is generated by a set of vertices S if v ∈ Ih[S]. We say that S is a hull set of
G if Ih[S] = V . The size of a minimum hull set of G is the hull number of G, denoted by
hn(G) [8].

It is known that computing hn(G) is an NP-hard problem for bipartite graphs [2]. Several
bounds on the hull number of triangle-free graphs are presented in [7]. In [6], the authors
show, among other results, that the hull number of any P4-free graph, i.e. any graph without
induced path with four vertices, can be computed in polynomial time.

It is well-known that:

Theorem 1 [3] G is P5-free if, and only if, for every induced subgraph H ⊆ G either H
has a dominating clique or a dominating cycle on five vertices.

We use this result to obtain the following one:

Theorem 2 The hull number of a P5-free bipartite graph G = (A ∪B,E) can be computed
in linear time.

More generally, we deduce that:

Theorem 3 If G is a {P5,K3}-free graph, then hn(G) can be computed in polynomial time.

In the second part of this work, we consider the version of the problem parameterized
by the neighborhood diversity of the input graph. The neighborhood diversity of a graph G
is the smallest k such that its vertex set can be partitioned into k sets S1, . . . , Sk, such that
any pair of vertices u, v ∈ Si satisfy N(u)\v = N(v)\u, for every 1 ≤ i ≤ k. This parameter
was proposed by Lampis [10] as a generalization of vertex cover and has been recently used
to obtain FPT algorithms for several problems [9].

We make use of four reduction rules to obtain, from a graph G, a graph G∗ having one
vertex less and satisfying either hn(G) = hn(G∗) or hn(G) = hn(G∗) + 1, according to the
used rule. We then use these rules to obtain a fixed parameter tractable (FPT) algorithm,
where the parameter is the neighborhood diversity of the input graph.

Given two graphs G and H , the lexicographic product G ◦H is the graph whose vertex
set is V (G◦H) = V (G)×V (H) and such that two vertices (g1, h1) and (g2, h2) are adjacent
if, and only if, either g1g2 ∈ E(G) or g1 = g2 and h1h2 ∈ E(G).

A characterization of the (geodesic) convex sets in the lexicographic product of two graphs
is given in [1]. In [11] they study the pre-hull number for this product. There are also some
results concerning the hull number of the cartesian and strong products of graphs [5, 4].

We use the reduction rules we present to characterize the hull number of the lexicographic
product of any two graphs. We prove that:
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Theorem 4 Let G be a connected graph and H be an arbitrary graph. Thus,

hn(G ◦H) =

{

2, if H is not complete;
(|V (H)| − 1)|S(G)|+ hn(G), if H is complete.

We finish this work by proposing two open questions:

Problem 5 For a fixed k, what is the computational complexity of determining hn(G), for
a Pk-free graph G?

Problem 6 Is there any FPT algorithm to determine whether hn(G) ≤ k, where k is the
parameter?
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Extended Abstract

In the seminal paper [4], Lovász introduced the so-called theta number ϑ(G) of a graph.
On one hand, this number provides an approximation of ω(G) and of χ(G) since (this is the
celebrated Sandwich Theorem)

ω(G) ≤ ϑ(G) ≤ χ(G),

where G stands for the complement of G. On the other hand, this number is the optimal
value of a semidefinite program [5], and, as such, is computable in polynomial time with
polynomial space encoding accuracy [5], [3]. In contrast, the computation of either of the
clique number or the chromatic number is known to be NP-hard.

By definition, a graph G is perfect, if for every induced subgraph H , ω(H) = χ(H) [2].
As ϑ(G) = χ(G) and χ(G) is an integer, we have

Theorem 1 (Grötschel, Lovász and Schrijver) [3] For every perfect graph, the chromatic
number is computable in polynomial time.

The notions of clique and chromatic numbers and of perfect graphs have been refined
using circular complete graphs. The circular chromatic number χc(G) of a graph G was first
introduced by Vince in [6]. It is the minimum of the fractions k/d for which G → Kk/d.
Later, Zhu defined the circular clique number ωc(G) of G to be the maximum of the k/d
for which Kk/d → G and introduced the notion of a circular perfect graph, a graph with the
property that every induced subgraph H satisfies ωc(H) = χc(H).

In this talk, we give the following closed formula for Lovász’s theta number of the powers
of cycle graphs Cd−1

k and of their complements, the circular complete graphs Kk/d:

Theorem 2 [1] Let d ≥ 2, k ≥ 2d, with gcd(k, d) = 1. Let, for 0 ≤ n ≤ d− 1,

cn := cos
(2nπ

d

)

, an := cos
(⌊nk

d

⌋2π

k

)

.

Then

ϑ(Kk/d) =
k

d

d−1
∑

n=0

d−1
∏

s=1

(cn − as
1− as

)

.

As a consequence, we establish that the circular-chromatic number of circular-perfect
graphs is computable in polynomial time, which extends Theorem 1 from the chromatic
number to the circular-chromatic number, and from perfect graphs to the superclass of
circular-perfect graphs.
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Extended Abstract

A vertex x ∈ V (G) in a graph G is said to resolve a pair u, v ∈ V (G) if dG(u, x) 6= dG(v, x).
A set S ⊆ V (G) is resolving if any pair of vertices in the graph can be resolved by some
vertex in S. If the set S is as small as possible, then it is called a metric basis and its
cardinality β(G) is the metric dimension of the graph G.

Metric bases and resolving sets were first introduced by Slater [8] and independently by
Harary and Melter [4]. In his seminal paper, Slater mentioned as an application the location
of a moving point in a graph by knowing the distances from the point to some sonar or
Loran stations which have been conveniently stationed in the graph. Currently, it is possible
to find many other applications in the literature. As instances, the study of resolvability
in hypercubes is closely related with the coin weighting problem (see [7] as a survey), the
strategies for the static Mastermind rely on resolving sets in Hamming graphs [2, 3], resolving
sets in triangular, rectangular and hexagonal grids have been proposed to study digital
images in [6], a method based on resolving sets for differentiating substances with the same
chemical formulation is given in [1], etc.

Since the problem of computing the metric dimension of a graph is NP-complete (see [5]),
many efforts have been focused on finding either exact values or tight bounds of the metric
dimension for certain classes of graphs as wheels, trees, unicyclic graphs, cartesian products
and Cayley digraphs among others. Here we are interested in Johnson and Kneser graphs.

A Kneser graph K(n, k) (where n > k) has the k-subsets of the n-set [n] = {1, . . . , n}
as vertices, and edges connecting disjoint sets. As an example, the graph K(5, 2) is the
Petersen graph shown in Figure 4(a). Like Kneser graphs, the vertices of a Johnson graph
J(n, k), with n > k, are the k-subsets of [n] but its edges are determined by intersections of
size k − 1 (see Figure 4(b)).

(a) (b)

Figure 4: (a) The Kneser graph K(5, 2), (b) The Johnson graph J(5, 2)

Our goal is to explore the relationship between several combinatorial and geometric
structures with the resolvability in Kneser and Johnson graphs. Particullarly, we will use
partitions, incidence matrices, symmetric designs, Steiner systems, partial geometries and
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toroidal grids. Although we will like to emphasize those relationships, in particular some of
those constructions provide tight lower bounds on the metric dimension of J(n, k) and/or
K(n, k).
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Extended Abstract

Introducion. Facility location problems (FLPs) focus on finding appropriate locations
for a company or a government to serve its clients. It can either be a minimization problem
(when considering costs) or a maximization problem (when considering service). These
problems have gathered many attention during the second half of the twentieth century (see
the book of Daskin [2] for historical review and the article of Klose and Drexl [3] for extensive
bibliography).

We focus on a specific FLP. Given a directed graph D = (V,A) with weights on arcs
and vertices, you must first select a set of nodes (the facility locations) called centers and
then affect each remaining vertex to exactly one center (this client is served by that center)
such that there is an arc going from the affected vertex to the chosen center. The weight of
each vertex corresponds to the expected revenue minus the cost of building a center on that
location. The weight of an arc consists of the expected revenue of this affectation minus any
generated cost. The aim is to maximize the revenue.

This problem can easily be described as 0-1 integer linear program and has attracted
focus from polytope’s scientists as Baïou and Barahona [1].

From digraphs to graphs. From the input digraph D = (V,A), we seek to find the
affectation arcs. This set of arcs must verify:

(i) No two arcs have same vertex as tail (a client would be served by two facilities).

(ii) No vertex can be the head of an arc and the tail of another (it is either a client or a
center).

Now, call independent two arcs from D that have no common extremity or have same
heads. And define its socalled line graph as G = (A,E) having an vertex for each arc in D
and edges between two arcs if they are not independent. We call such a graph a facility-
location graph. The original problem on D is then closely related to the problem of finding a
stable set of maximum weight in G (with an appropriate choice of weights on G’s vertices).

a b
a

a

a

a

b

b

b
b

In digraph D In G F-L graph of D

Figure 5: Rules for building facility-location graphs

Figure 6 shows an exemple for a given digraph.
However, not every undirected graph is a facility-location graph. For exemple if you add

an edge between vertices b and e in the undirected graph of Figure 6, the obtained graph
has no antecedent through our transformation.

Recognizing facility-location graphs. We have been investigating this question. We
obtained several results.

Proposition 1 Let G be an undirected graph and e an edge connecting two vertices of degree
exactly 2. Then G is a facility location graph if and only if G \ e is a facility location graph.
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Figure 6: A digraph and its facility-location graph

With this last proposition, we may peel off every ear of G, and get the following result.

Proposition 2 Given G an triangle-free graph, it is a facility location graph if and only if,
after having peeled the ears off, each of the remaining connected components has at most one
cycle.

The main question behind those lines is the next one.

Question 3 Is it easy to recognize facility location graphs ?

In this talk, we will elaborate about this last question.
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Extended Abstract

Notation follows [2]. A digraph is called semicomplete when there is an arc between every
two distinct vertices. A semicomplete digraph without 2-cycles is called a tournament.
A digraph D = (V,A) is locally semicomplete if the set of out-neighbours and the set
of in-neighbours of v both induce semicomplete digraphs for every v ∈ V . A digraph is
quasi-transitive if the presence of the arcs xy, yz implies that there is an arc between x
and z (which may be xz or zx or both).

Let D = (V,A) be a digraph and let s1, . . . , sk, t1, . . . , tk be a collection of (not necessarily
distinct) vertices of D. A weak k-linkage from (s1, . . . , sk) to (t1, . . . , tk) is a collection of
k arc-disjoint paths P1, . . . , Pk such that Pi is an (si, ti)-path or a proper cycle containing
si = ti for each i ∈ [k]. The weak k-linkage problem is the following. Given a digraph
D = (V,A) and not necessarily distinct vertices s1, . . . , sk, t1, . . . , tk; decide whether D
contains a weak k-linkage from (s1, . . . , sk) to (t1, . . . , tk). It is well-known that the weak
k-linkage problem is NP-complete already when k = 2 [3].

Until very recently, the only non-trivial class of digraphs for which the weak k-linkage
problem was known to be polynomial for every fixed k was the class of acyclic digraphs, for
which there was an algorithm [3] due to Fortune, Hopcroft and Wyllie.

Theorem 1 [3] The weak k-linkage problem is polynomially solvable for every fixed k when
the input is an acyclic digraph.

Even for the class of tournaments a polynomial algorithm was only known for the case
of k = 2 [1]. The following results due to Fradkin and Seymour change that drastically.

Theorem 2 (Fradkin-Seymour) [4] The weak k-linkage problem is polynomial for every
fixed k, when we consider digraphs that are obtained from a semicomplete digraph by replacing
some arcs with multiple copies of those arcs and adding any number of loops.

Theorem 3 (Fradkin-Seymour) [4] For every natural number α the weak k-linkage prob-
lem is polynomial for every fixed k, when we consider digraphs with independence number at
most α.1

Let D = (V,A) be a digraph and O = v1, . . . , vn an ordering of its vertices. We say
that O has cutwidth at most θ if for all j ∈ {2, 3, . . . , n} there are at most θ arcs uv with
u ∈ {v1, . . . , vj−1} and v ∈ {vj , . . . , vn} and we say that D has cutwidth at most θ if there
exists an ordering O of V (D) which has cutwitdh at most θ. The minimum θ such that D
has cutwidth at most θ is called the cutwidth of D and is denoted by cw(D). The following
result is implicitly stated in [4].

Theorem 4 (Fradkin-Seymour) [4] For every natural number θ the weak k-linkage prob-
lem is polynomial for every fixed k, when we consider digraphs with cutwidth at most θ.

Definition 5 If S is a digraph on s vertices v1, v2, . . . , vs and H1, . . . , Hs are disjoint di-
graphs, we denote by D = S[H1, ..., Hs] the digraph which we obtain by replacing the ith ver-
tex vi of S by Hi (we say that we blow up vi to Hi) and adding all possible arcs from V (Hi)
to V (Hj) whenever ij is an arc of S. A digraph D is decomposable if D = S[H1, ..., Hs],

1The independence number of a digraph D is the cardinality of the largest set I ⊆ V (D) such that
A(D〈I〉) = ∅.
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for some digraph S, with s = |V (S)| ≥ 2 and some choice of disjoint digraphs H1, ..., Hs.
Let Φ be a class of digraphs. We say that D is totally Φ-decomposable if either D ∈ Φ
or D = S[H1, ..., Hs] is decomposable with S ∈ Φ and Hi totally Φ-decomposable, for
i = 1, ..., s. We call this decomposition along with total Φ-decompositions of each Hi a
total Φ-decomposition of D.

Given a digraph D and a non negative integer c, let D(c) denote the set of digraphs that can
be obtained from D by first adding any number of arcs parallel to the already existing ones
and then blowing up b vertices, with 0 ≤ b ≤ c, to digraphs of size less than or equal to c each.

Definition 6 We say that a class of digraphs Φ is bombproof if there exists a polynomial
algorithm AΦ to find a total Φ-decomposition of every totally Φ-decomposable digraph and,
for every integer c, there exists a polynomial algorithm2 BΦ to decide the weak k-linkage
problem for the class

Φ(c) :=
⋃

D∈Φ

D(c).

Our main result, whose proof uses Theorems 3 and 4 is the following.

Theorem 7 For every fixed k there exists a polynomial algorithm for the weak k-linkage
problem for the totally Φ-decomposable digraphs.

In order to prove this theorem we needed the following stronger version dealing with
digraphs that can be obtained from totally Φ-decomposable digraphs by deleting a bounded
set of arcs in a controlled way.

Theorem 8 There is a polynomial algorithm M which takes as input a 5 tuple [D, k, k′,Π, F ],
where Φ is bombproof, D is a totally Φ-decomposable digraph, k, k′ are natural numbers with
k′ ≤ k, Π is a list of k′ terminal pairs and F ⊆ A(D) is a set of arcs satisfying

d−F (v), d
+
F (v) ≤ k − k′ for all v ∈ V (D). (1)

|F | ≤ (k − k′)2k

and decides whether D \ F contains a weak Π-linkage.

Using Theorem 7 and a number of structural results on these classes, we prove the
following.

Theorem 9 The weak k-linking problem is polynomially solvable for every fixed k in di-
graphs that are either quasi-transitive, locally semicomplete or extended semicomplete.
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Extended Abstract

We consider finite, simple, and undirected graphs. For a graph G, the vertex set and the
edge set are denoted V (G) and E(G), respectively. For a vertex u of G, the neighbourhood,
the closed neighbourhood, and the degree are denoted NG(u), NG[u], and dG(u), respectively.
For some set U of vertices of G, let NG[U ] =

⋃

u∈U

NG[u].

A set I of vertices of a graph G is independent if no two vertices in I are adjacent. An
independent set I of G is maximal if every vertex u in V (G) \ I has a neighbour in I. An
independent set I of G is maximum if G has no independent set J with |J | > |I|.

The minimum length of a cycle in a graph G is the girth of G.
In [7] Plummer defines a graph to be well-covered if all its maximal independent sets have

the same size. Generalizing this concept, Finbow, Hartnell, and Nowakowski [4] define, for
every r ∈ N, the set Mr as the set of graphs that have maximal independent sets of exactly
r different sizes. With this notation, M1 contains exactly all well-covered graphs.

The structure of well-covered graphs or more generally of the graphs in Mr is far from
completely understood [5, 8]. Many results on Mr concern graphs without small cycles.
In [3] Finbow, Hartnell, and Nowakowski prove that C7 is the only well-covered graph of
minimum degree at least 2 and girth at least 6. Similarly, Finbow, Hartnell, and Whitehead
[4] prove that C8, C9, C10, C11, and C13 are the only graphs in M2 of minimum degree at
least 2 and girth at least 8 and, for r ≥ 4, Hartnell and Rall [6] prove that every graph in
Mr of minimum degree at least 2 and girth at least 6r− 6 is a cycle. For r ∈ {2, 3}, the set
Mr contains graphs of minimum degree at least 2 and girth 6r − 5 that are no cycles [6].

In the present paper we study connected graphs in Mr that are of minimum degree at
least 2 and girth at least 7. Our motivation was the conjecture that, for r = 2, there are only
finitely many such graphs all of which are of maximum degree at most 4. As our main result,
we prove, for every r, that there are only finitely many such graphs of bounded maximum
degree. Furthermore, we prove several results restricting the degrees of such graphs.

For further related results concerning Mr and (odd) girth conditions, refer to [1, 2, 9].
For r ≥ 1, let M≤r = M1 ∪ . . . ∪ Mr, that is, M≤r is the set of graphs that have

independent sets of at most r different sizes. We begin with our main result.

Theorem 1 For r ≥ 1 and ∆ ≥ 3, every graph in M≤r that is of minimum degree at least
2, maximum degree at most ∆, and girth at least 7 has order at most

∆

∆− 2

(

(∆− 1)36(r+1)2+42(r+1)+5 − 1
)

.

In view of Theorem 1 conditions that imply a bounded maximum degree of the considered
graphs are of interest. Our remaining results illustrate different conditions that allow to
restrict the vertex degrees.

Theorem 2 For r ≥ 0 and s ≥ 0, every graph in M≤r that is of minimum degree at least
2 and girth at least 7, and in which for every vertex u, there are at most s cycles of length
7 that intersect in u, has maximum degree at most

(

r
2

)

+ 2s+ 1.

Theorem 3 implies that for every r ≥ 1, the graphs in M≤r of minimum degree at least 2
and girth at least 8, have bounded maximum degree. Hence, by Theorem 1, there are only
finitely many such graphs. For r ∈ {1, 2}, this was known [3, 4].

Our next result limits the number of neighbours of minimum degree for every vertex.

32



Proposition 3 If r ≥ 0 and G is a graph in M≤r of minimum degree at least 2 and girth
at least 7, then every vertex in G has at most

((

r
2

)

+ 1
)2

neighbours of degree 2.

Our next result is a variation of Proposition 3. It shows that vertices of large degree
cannot have too many vertices of considerably smaller degree within distance 3.

Proposition 4 Let r ≥ 0 and let G be a graph in M≤r of minimum degree at least 2 and
girth at least 7.

If u is a vertex of G and N is a set of d1 neighbours of u such that every vertex in N
has degree at most d2 and for every vertex v in N and every vertex w in NG(v) \ {u}, there
is a vertex z in NG(w) \ {v} of degree at most d3, then

d1
(d2 − 1)(d3 − 1) + 1

− 1 ≤
(

r

2

)

.

In our next result we consider graphs of girth at least 6 that do not contain cycles of length
7. While we cannot bound the maximum degree in this case, we can at least bound the
number of different vertex degrees.

Proposition 5 For r ≥ 0, every graph G in M≤r that is of minimum degree at least 2,
girth at least 6, and does not contain a cycle of length 7, has at most

(

r
2

)

different vertex
degrees.

We close by repeating our conjecture:

Conjecture 6 There are only finitely many graphs in M2 that are of minimum degree at
least 2 and girth at least 7. Furthermore, all these graphs are of maximum degree at most 4.
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Extended Abstract

A factor of a graph G is a spanning subgraph of G. For two integers a and b such that
0 ≤ a ≤ b, an [a, b]-factor is a factor in which the degree of each vertex is between a and
b. It can also be defined in terms of graph partition by vertex-disjoint components whose
vertices are of degree between a and b. Factors, particularly [a, b]-factors, have been studied
in lots of papers and several sufficient conditions have been established for the existence of
factors having some specific properties, most often on degrees.

In [2], Kouider and Lonc showed that if a and b are two integers such that b ≥ a+1 and
if G is a graph with minimum degree δ and independence number α verifying:

α ≤
{

4b(δ−a+1)
(a+1)2 if a is odd

4b(δ−a+1)
a(a+2) if a is even,

then G has an [a, b]-factor.

In particular, for a = 2, we obtain that if α ≤ b(δ−1)
2 then G has a [2, b]-factor. But

what happens if α > b(δ−1)
2 ? Let us consider a partition of G by vertex-disjoint components

so that each component is a vertex, an edge or with its vertices of degree between 2 and b.
Clearly, such a partition with neither edges nor vertices is nothing but a [2, b]-factor. We
investigate the relationship between the independence number, the minimum degree and the
number of components that are edges or vertices in such a partition in order to obtain an
upper bound for the number of these components. The work has already been done for b = 2
in [1]. Here we propose to extend it to larger b and obtain the following result:

Let b be an integer such that b ≥ 4 and G a graph of minimum degree δ, independence
number α such that α > b(δ−1)

2 and without isolated vertices. Then G possesses a partition
with vertex-disjoint components such that each component C is a vertex, an edge or verifies
2 ≤ dC(x) ≤ b for all x in C and such that this partition contains at most α − ⌊ b(δ−1)

2 ⌋
components that are edges or vertices.
Furthermore, the bound given above is best possible.
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Extended Abstract

Background

The notion of treewidth is central in the theory of the Graph Minors developed by Robert-
son and Seymour [1]. Roughly, the treewidth of a graph measures how close a graph is to a
tree.

The notion of treewidth plays an important role in the domain of algorithmic computa-
tional complexity. Indeed, many graph theoretical problems that are NP-complete in general
are tractable when input graphs have bounded treewidth. In this context, many Fixed Pa-
rameter Tractable (FPT) algorithms have been designed to solve problems like Hamiltonian
Circuit, Independent Set, Graph Coloring, etc. More generally, the celebrated theorem of
Courcelle states that any monadic second-order graph properties can be decided in linear
time in the class of graphs of bounded treewidth [2]. Typically, these algorithms are based
on dynamic programming on a given tree-decomposition of a graph.

Thus, an important challenge consists in computing tree-decompositions of graphs with
small width. This problem is NP-complete [3] and special interest has been directed toward
special graph classes [4, 5].

An immediate consequence from the seminal work on Graph Minors [1] of Robertson
and Seymour is the existence of a polynomial-time algorithm to decide whether a graph has
treewidth at most k, where k is a fixed parameter. Hence, in [6], Bodlaender and Kloks design
a linear time algorithm such that for k and k′ fixed, and given a n-node graph G, a tree-
decomposition of width at most k′ of G, the algorithm decides if tw(G) ≤ k. Unfotunately,
with a constant more than exponential in k and k′. In the last decades, analogous algorithms
have been designed for several other width parameters [6, 7, 8].

Both pathwidth and treewidth have also a nice theoretical-game interpretation [9]. In
[10], Fomin et al. introduce a variant of these games, called non-deterministic graph search-
ing, estabilishing a link between pathwidth and treewidth. The q-branched tree-decompo-
sition which is a rooted tree-decomposition where ∞ ≥ q ≥ 0 is the maximum number of
vertices in any path from the root with at least two children.

Fomin et al. prove that calculating this width parameter is NP-hard for any q ≥ 0 and
n-node graph G [10]. Prior to this work, no explicit FPT algorithm for this problem was
known.

Lastly, for the special tree decomposition [11], used in the recognition some properties
of graphs that can be translated into second order monadic order, there is also no explicit
known algorithm prior to this work.

Our results

Our work aims to unify and generalize the FPT algorithms for computing various de-
compositions of graphs. As a particular application, our algorithm decides in linear time if
the q-limited width parameter of a graph G is at most k, q ≥ 0 and k ≥ 1 fixed.

In order to generalize the algorithm of [6], we use the notions of partition function and
partitioning tree defined in [12]. Given a finite set A, a partition function Φ for A is a
function from the set of partitions of A into the integers. A partitioning-tree of A is a tree
T together with a one-to-one mapping between A and the leaves of T . The Φ-width of T
is the maximum Φ(P) of A defined by the internal vertices of T . Partition functions are a
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unified view for a large class of width parameters like treewidth, pathwidth, branchwidth,
etc.

In this work, we extend the definition of Φ-width to the one of q-branched Φ-width of a
set A. Then, we use the framework of [6] applied to the notions of partition functions and
partitioning-tree in order to design a unified linear-time algorithm that decides if a finite set
has q-branched Φ-width at most k. Again, q ≥ 0 and k ≥ 1 are fixed parameters.

We propose an algorithm such that, for any k and q fixed parameters, and any partition
function Φ satisfying some properties, our algorithm decides in time O(|A|) if a finite set A
has q-branched Φ-width at most k. Since the mentioned width parameters can be defined
in terms of Φ-width, our algorithm unifies the works in [6, 8, 7]. Moreover, our algorithm
generalizes the previous algorithms since it is not restricted to width-parameters of graphs.
Finally, it provides the first explicit linear-time algorithm that decides if a graph G has a
q-branched tree-decomposition or a special tree-decomposition of width k, for any k ≥ 1,
q ≥ 0 fixed.
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Extended Abstract

In the following we only consider simple graphs with no isolated edges. A proper edge
coloring of a graph G = (V,E) is an assignment of colors to the edges of the graph such
that two adjacent edges do not use the same color. An adjacent vertex-distinguishing k-edge
coloring, or k-avd-coloring for short, of a graph G is a proper edge coloring of G using at
most k colors such that, for every pair of adjacent vertices u, v, the set of colors of the
edges incident to u differs from the set of colors of the edges incident to v. Adjacent vertex-
distinguishing colorings are also known as adjacent strong edge coloring and 1-strong edge
coloring. We denote by χ′

avd(G) the avd-chromatic number of G, which is the smallest integer
k such that G can be k-avd-colored.

Zhang et al. completely determined the avd-chromatic number for paths, cycles, trees,
complete graphs, and complete bipartite graphs [5]. Moreover, they proposed the following
conjecture [5], where ∆(G) denotes the maximum degree of G:

Conjecture 1 If G is a connected graph with at least 6 vertices, then χ′
avd(G) ≤ ∆(G) + 2.

Balister et al. [1] proved Conjecture 1 for graphs with maximum degree three and for
bipartite graphs.

Let mad(G) = max
{

2|E(H)|
|V (H)| , H ⊆ G

}

be the maximum average degree of the graph G,

where V (H) and E(H) are the sets of vertices and edges of H , respectively.

Wang and Wang [3] linked maximum average degree and avd-colorings , and their results
were further improved by Hocquard and Montassier [2]:

Theorem 2 [3, 2] Let G be a graph with maximum degree ∆(G).

1. If ∆(G) ≥ 3 and mad(G) < 3, then χ′
avd(G) ≤ ∆(G) + 2.

2. If ∆(G) ≥ 3 and mad(G) < 3− 2
∆(G) , then χ′

avd(G) ≤ ∆(G) + 1.

Two main questions arise from these partial results: can this threshold of 3 as an upper-
bound on mad(G) be reached with a sufficiently large lower-bound on ∆(G) in the case of
Theorem 2.2, and broken in the case of Theorem 2.1?

We answer positively to these questions with Theorem 3.1, and prove more precisely
that there is no threshold in the case of Theorem 2.2 (and thus in the case of Theorem 2.1).
Theorem 3.2-3 are refinements of it for small upper-bounds on mad(G).

Theorem 3 Let G be a graph with maximum degree ∆(G) and maximum average degree
mad(G).

1. For all m ≥ 5
2 , if ∆(G) ≥ 16m2 and mad(G) < m, then χ′

avd(G) ≤ ∆(G) + 1.

2. If ∆(G) ≥ 7 and mad(G) < 3, then χ′
avd(G) ≤ ∆(G) + 1.

3. If ∆(G) ≥ 3 and mad(G) < 3− 1
∆(G)−1 , then χ′

avd(G) ≤ ∆(G) + 1.
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Theorem 3 is proved using discharging methods. The proof of Theorem 3.1 is heavily
inspired from a beautiful proof by Woodall [4] for a similar statement in the case of list edge
coloring with ∆ colors. Note that list edge coloring is similarly conjectured to be always
possible with ∆ + 1 colors. The main idea in the proof of Theorem 3.2 is that a minimal
(minimal in the lexico-graphic order) counter-example contains no cycle in which every edge
is incident to at least one vertex of degree 2. In the proof of Theorem 3.3, we consider
a tree-like configuration of unbounded size that contains all the locally problematic cases,
and we prove that it cannot be problematic on the whole graph if the upper-bound on the
maximum average degree is respected.
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Extended Abstract

All the graphs considered here are simple and finite. A 2-distance k-coloring of a graph
G is a coloring of the vertices of G with k colors such that two vertices that are adjacent or
have a common neighbor receive distinct colors. We define χ2(G) as the smallest k such that
G admits a 2-distance k-coloring. A generalization of the 2-distance k-coloring is the list
2-distance k-coloring, where instead of having the same list of k colors for the whole graph,
every vertex is assigned some set of k colors and has to be colored from it. We define χ2

ℓ(G)
as the smallest k such that G admits a list 2-distance k-coloring of G for any list assignment.
Obviously, 2-distance coloring is a sub-case of list 2-distance coloring (where the same color
list is assigned to every vertex), so for any graph G, χ2

ℓ(G) ≥ χ2(G).

The study of χ2(G) on planar graphs was initiated by Wegner in 1977 [7], and has been
actively studied because of his conjecture, stated below. The maximum degree of a graph G
is denoted ∆(G).

Conjecture 1 (Wegner [7]) If G is a planar graph, then:

• χ2(G) ≤ 7 if ∆(G) = 3

• χ2(G) ≤ ∆(G) + 5 if 4 ≤ ∆(G) ≤ 7

• χ2(G) ≤ ⌊ 3∆(G)
2 ⌋+ 1 if ∆(G) ≥ 8

Note that any graph G satisfies χ2(G) ≥ ∆(G) + 1. Indeed, if we consider a vertex of
maximal degree and its neighbors, they form a set of ∆(G) + 1 vertices, any two of which
are adjacent or have a common neighbor. Hence at least ∆(G) + 1 colors are needed for a
2-distance coloring of G. It is therefore natural to ask when this lower bound is reached.
For that purpose, we can study, as suggested by Wang and Lih [6], what conditions on the
sparseness of the graph can be sufficient to ensure the equality holds. A first measure of the
sparseness of a planar graph is its girth. The girth of a graph G, denoted g(G), is the length
of a shortest cycle.

Conjecture 2 (Wang and Lih [6]) For any integer k ≥ 5, there exists an integer D(k)
such that for every planar graph G verifying g(G) ≥ k and ∆(G) ≥ D(k), χ2(G) = ∆(G)+1.

Conjecture 2 was proved by Borodin, Ivanova and Noestroeva [3, 4] to be true for k ≥ 7,
even in the case of list-coloring, and false for k ∈ {5, 6}.

Dvořák, Král, Nejedlý and Sǩrekovski [5] proved that it is off by just one for k = 6, i.e.
for a planar graph G with girth 6 and sufficiently large ∆(G), χ2(G) ≤ ∆(G) + 2. They
also conjectured that the same holds for planar graphs with girth 5, but this remains open.
Borodin and Ivanova [1, 2] improved the corresponding bound for graphs of girth 6, and
extended it to list-coloring.

Theorem 3 (Borodin and Ivanova [1]) Every planar graph G with ∆(G) ≥ 18 and g(G) ≥
6 admits a 2-distance (∆(G) + 2)-coloring.

Theorem 4 (Borodin and Ivanova [2]) Every planar graph G with ∆(G) ≥ 24 and g(G) ≥
6 admits a list 2-distance (∆(G) + 2)-coloring.

We improve the previous two theorems as follows.
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Theorem 5 Every planar graph G with ∆(G) ≥ 17 and g(G) ≥ 6 admits a list 2-distance
(∆(G) + 2)-coloring.

Another way to measure the sparseness of a graph is through its maximum average degree
as defined below. The average degree of a graph G, denoted ad(G), is

∑
v∈V

d(v)

|V | = 2|E|
|V | . The

maximum average degree of a graph G, denoted mad(G), is the maximum of ad(H) over
all subgraph H of G. Using this measure, we, in fact, prove a more general theorem than
Theorem 5.

Theorem 6 Every graph G with ∆(G) ≥ 17 and mad(G) < 3 admits a list 2-distance
(∆(G) + 2)-coloring.

Euler’s formula links girth and maximum average degree in the case of planar graphs,
as it easy to check that for any planar graph G, (mad(G)− 2)(g(G)− 2) < 4. Thus, planar
graphs of girth at least 6 have a maximum average degree smaller than 3, and Theorem 5 is
a corollary of Theorem 6.

To prove Theorem 6, we use a global discharging method, that is, a discharging method
where some forbidden configurations have unbounded size and where the weight can travel
arbitrarily far.

An injective k-coloring of G is a (not necessarily proper) coloring of the vertices of G
with k colors such that no vertex has two neighbors with the same color, or, in other words,
such that two vertices that have a common neighbor receive distinct colors. A 2-distance
k-coloring is also an injective coloring, but the reverse is not true. The list version of this
coloring is a list injective k-coloring of G.

Some results on 2-distance coloring have their counterpart on injective coloring with one
less color, and it is the case of Theorems 3 and 4. It happens that the proof of Theorem 6
also works with close to no alteration for list injective coloring, thus yielding a proof that
every graph G with ∆(G) ≥ 17 and mad(G) < 3 admits a list injective (∆(G) + 1)-coloring.
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Extended Abstract

Let G = (V,E) be a simple graph. A vertex in a graph G is said to dominate itself and
every vertex adjacent to it. A subset D of V is a dominating set of G, if every vertex not in
D is adjacent to at least one vertex in D. The domination number, γ(G), is the minimum
cardinality among all the dominating sets of G. The dominator coloring of a graph G is an
assignment of colors to the vertices of G such that it is a proper coloring and every vertex
dominates all vertices of at least one color class (possibly its own class if it’s alone sharing
the color). The minimum number of colors required for a dominator coloring of G is called
the dominator chromatic number of G and is denoted by χd(G). Recently, Arumugam & al.
[1] showed that, unless P = NP , χd cannot be computed in polynomial time on bipartite,
planar or split graphs. A narrow bound for nontrivial trees T given by Gera [3, 4] shows that
χd(T ) is bounded below by γ(T ) + 1 and above by γ(T ) + 2. Moreover, a charactezaition of
trees T with χd(T ) = γ(T ) + 1 was given in [2]. However this result, as it is, is not easy to
check for any tree, and therefore the problem of computing the exact value of the dominator
coloring number of a tree remains open.

We provide a polynomial time algorithm computing χd of nontrivial trees. Before pre-
senting our results, we need to introduce some notations and definitions. The private neigh-
borhood of a vertex v of X with respect to X is Pn(v,X) = N [v] \ N [X \ {v}]. The set of
stems of G is denoted by S(G) = S. A star Rk is a nontrivial tree of order k with at least
k−1 leaves. Let V1, V2, .., Vχd

be the color classes of a minimum dominator coloring of G. A
vertex v ∈ Vi is called solitary if |Vi| = 1. We denote by CP the set of color classes containing
solitary vertices, by CS the set of color classes, where each of them contains at least two
vertices and is dominated by at least one vertex, and by CG the set of color classes, where
each of them contains at least two vertices and is not dominated by any vertex. Clearly, CP ,
CS and CG form a partition of {V1, V2, .., Vχd

}. Also, let A be the set of all solitary vertices
and B the set of all vertices belonging to color classes in CG. Clearly, |CP | = |A|. We denote
by xR, a vertex dominating the color class R ∈ CS and let DS = {xR ∈ V : R ∈ CS}. A
vertex cover in a graph G is a set of vertices that covers all edges of G. Thus D is a vetex
cover in G if and only if V −D is an independent set. The vertex cover number, α0(G), is
the minimum cardinality of a vertex cover in G. A set X ⊆ V (G) is a packing set of G if
N [x] ∩N [y] = ∅ holds for any two distinct vertices x, y ∈ X .

Volkmann gives in [5], a polynomial time characterization of trees with equal domination
and vertex cover numbers. The following result shows that trees T with equal domination
and vertex cover numbers satisfy χd(T ) = γ(T ) + 1.

Proposition 1 Let T be a nontrivial tree with γ(T ) = α0(T ). Then χd(T ) = γ(T ) + 1.

Due to space constraints, proofs have been deferred to a longer version of the paper.
Note that the converse of Proposition 1 is not true in general. To see consider the tree

T in Figure 7. Then T has χd(T ) = 5 but γ(T ) = 4 < α0(T ) = 5.

Let Q = V \N [S] and Q∗ = {x ∈ V \ S : x ∈ N(S) \N(Q)}. Clearly L ⊂ Q∗. We shall
prove:

Theorem 2 Let T be a nontrivial tree. Then, χd(T ) = γ(T ) + 1 if and only if either T is
a star or T is a tree such that Q is a packing set and Q∗ is independent.

To prove Theorem 2, next results are necessary. The first lemma establishes that without
lost of generality, we may consider that leaves share the same color.
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Figure 7: A tree T with χd(T ) = γ(T ) + 1 and γ(T ) 6= α0(T ).

Lemma 3 ([2]) Every tree T of order at least three admits a minimum dominator coloring
such that all leaves have the same color.

The next two lemmas give some properties when minimum dominator coloring reaches
the lower bound.

Lemma 4 ([2]) Let T be a nontrivial tree different from a star. If χd(T ) = γ(T ) + 1, then
for every minimum dominator coloring of T such that all leaves have the same color, we
have:
a) |CG| = 1.
b) A ∪DS is a minimum dominating set of T. Furthermore, A ∩DS = ∅.
c) Every color class R ∈ CS is dominated by a vertex xR ∈ B, ie. DS ⊆ B.

Lemma 5 Let T be a nontrivial tree different from a star. If χd(T ) = γ(T ) + 1, then for
every minimum dominator coloring of T such that all leaves have the same color, every
vertex of V \ (A ∪B) is adjacent to at least one stem.

We show that in a dominator coloring with γ(T ) + 1 colors of a tree T of order at least
three such that all leaves of T have the same color, the vertices of DS are isolated in the
subgraph induced by A ∪DS.

Lemma 6 Let T be a nontrivial tree different from a star. If χd(T ) = γ(T ) + 1, then for
every dominator coloring with χd(T ) colors such that all leaves have the same color, we have
N(DS) ⊆ V \ (A ∪B).

Moreover, in such coloring, we may consider that each solitary vertex is a stem.

Lemma 7 Let T be a nontrivial tree with χd(T ) = γ(T ) + 1. Then there exists a minimum
dominator coloring such that all leaves have the same color and every solitary vertex is a
stem.

Based on Theorem 2, we give a polynomial time algorithm computing the dominator
chromatic number for nontrivial trees.
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Extended Abstract

Although convexity notions in graph theory have been traditionally studied from an
abstract point of view, very recently one can found in the literature a growing interest in
computational aspects of the field. Particularly, the geodetic closure is analysed in [1, 2] as
a tool for reconstructing the entire graph or a certain vertex subset from only a few points
in it, similarly to the Euclidean case. Recall that, given a graph G = (V,E) and a subset
of vertices S ⊆ V , the geodetic closure I(S) of S in G is defined to be the smallest set
containing all the internal vertices from all the shortest paths among the vertices in S. A
subset S ⊂ V is called geodetic if V (G) = I(S) and the cardinality of a minimum geodetic
set is called the geodetic number g(G) of G.

In general, to compute I(S), you need to find all shortest paths between all vertices in
S. However, it is well-known that for some cases (trees or complete graphs for instance) it
is not necessary to explore all the pairs of vertices. Following this idea, the aim of this work
is to determine those families of graph for which the computation of the geodetic closure is
easier than the general case, in other words those graphs which are supergeodetic in a sense.

Given a graph G, a subset S ⊂ V is called supergeodetic if there exists a distinguished
vertex u ∈ S such that V =

⋃

v∈S I(u, v). In other words, any vertex of G lie in some geodesic
between u and some other vertex of S. The cardinality of a minimum supergeodetic set is
called the supergeodetic number sg(G) of G. Note that, in general, this parameter does not
agree with the geodetic number of the graph. For instance, the graph of Figure 8 has geodetic
number 3, and S = {u, v, w} is the unique minimum geodetic set, whereas the supergeodetic
number of G is 4, and S′ = {u, v, w, x} is a minimum supergeodetic set with distinguished
vertex u.

u

v w

x

Figure 8: A graph with geodetic number 3 and supergeodetic number 4.

We study some cases in which both parameters, g and sg, agree, and also we give ex-
amples with any suitable geodetic and supergeodetic numbers. So both parameters agree
when extreme values are reached and, in contrast, the difference between geodetic and su-
pergeodetic numbers can be as high as we want.

Theorem 1 1. If G is a graph with n vertices, then sg(G) = 2 (respectively n, n− 1) if
and only if g(G) = 2 (respectively n, n− 1).

2. For positive integers a and b with 3 ≤ a ≤ b, there exists a graph G such that g(G) = a
and sg(G) = b.

It is also natural to relate geodecity parameters with the order and the diameter of the
graph as we show in the next result.

Theorem 2 Given k, n and d positive integers such that k ≥ 4, n ≥ 6, 2 ≤ d ≤ n− 4 and
k < n−d+1, then there exists a graph G having n vertices, diameter d and g(G) < sg(G) = k.
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Regarding to the relationship between supergeodetic number and Steiner number of
a graph the results are different. Recall that the Steiner number [4] of G, st(G) is the
cardinality of the minimum set S ⊂ V (G) such that any vertex v ∈ V (G) is in some Steiner
tree of S, and it is well known that g(G) ≤ st(G). However, in general, there exists no
relationship between Steiner and supergeodetic numbers.

Since both geodetic and supergeodetic sets must always contain the extreme vertices
of the graph, it is natural to wonder about graphs whose extreme vertex set would be a
supergeodetic set. The answer to that question is that extreme vertices are supergeodetic
set in trees but not in other close graph classes. So it is interesting to find a universal
supergeodetic set, and the boundary vertex set [3] is. Given a graph G = (V,E) and two
vertices u, v ∈ V , the vertex v is a boundary vertex of u if no other neighbor of v is further
from u than v. A vertex v is a boundary vertex of G if it is a boundary vertex of some
vertex u ∈ V . The boundary set ∂(G) of G is the set of all the boundary vertices and it is a
supergeodetic set in any graph G.

Finally we consider the class of split graphs. The geodetic number of any split graphs
was obtained in [2], and authors also described minimum geodetic sets in theses graphs.
We study the supergeodetic number in this graph class. In some cases minimum geoedetic
sets are also supergedetics, and in other ones they are not, but can be enlarged to became
minimum supergeodetic sets.
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Extended Abstract

A radio k-labeling of a connected graph G is an assignment f of non negative integers to the
vertices of G such that

|f(x)− f(y)| ≥ k + 1− d(x, y),

for any two distinct vertices x and y, where d(x, y) is the distance between x and y in G.
The radio k-labeling number rlk(G) of G is the minimum of maxx,y∈V (G) |f(x) − f(y)| over
all radio k-labelings f of G.

The study of radio k-labelings was initiated by Chartrand et al. [1], motivated by radio
channel assignment problems with interference constraints.

Except for paths [1, 3] and cycles [5], radio k-labelings have been investigated mainly
for fixed values of k. This problem generalizes both the classical proper vertex-colouring
problem (when k = 1) and the the well studied L(2, 1)-labeling problem (when k = 2). The
other values of k considered were when k is close to the diameter of the graph. The interested
reader is referred to surveys [2, 7] and recent papers [6, 8] for complementary results.

For a set of positive integers {d1, d2, . . . , dt}, the (infinite) distance graph D(d1, d2, . . . , dt)
has the set Z of integers as vertex set, with two distinct vertices i, j ∈ Z being adjacent if
and only if |i − j| = dℓ, for some ℓ.

Concerning radio k-labelings of distance graphs, the only known results are for k = 2 and
mainly for 4-regular distance graphs [4, 9]. Moreover, for the path Pn of order n (a finite
subgraph of D(1) = P∞), the following bounds were proved in [1, 3]: for any n > 3 and any
1 ≤ k ≤ n− 3,

k2 + 4

2
≤ rlk(Pn) ≤

k2 + 2k

2
, if k is even,

k2 + 1

2
≤ rlk(Pn) ≤

k2 + 2k − 1

2
if k is odd;

and it was conjectured in [3] that the upper bound is the exact value of the radio k-
labeling number when the length of the path is large enough.

We prove the following results :

t
2k

2 + 1
2 ≤ rlk(D(1, 2, . . . , t)) ≤

{

t
2k

2 + t
2k, when k is odd,

t
2k

2 + k, when k is even.

t
2k

2 − P2(t)k + P3(t) ≤ rlk(D(1, t)) ≤ t
2k

2, for t ≥ 3 and odd k,
t
2k

2 −Q2(t)k +Q3(t) ≤ rlk(D(t− 1, t)) ≤ t
2k

2 + k − t+2
2 , for t ≥ 3 and odd k.

where Pi(t) and Qi(t) denote polynomials of variable t of degree i.
For each upper bound, we have found a corresponding coloring sequence with the desired

number of labels while lower bounds were obtained by bounding the upper traceable number
of the distance graphs by a function of the same parameter on the infinite path.
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Extended Abstract

The subject of rainbow connection in graphs was introduced by Chartrand et al [2] in
2008. Given a simple, finite, connected graph G, the rainbow connection number of G,
denoted by rc(G), is defined as follows. An edge-coloured path is rainbow if its edges have
distinct colours. Then, rc(G) is the minimum number of colours required to colour the edges
of G such that any two vertices are connected by a rainbow path.

Chartrand et al [2] studied the function rc(G) for many basic graphs G, including cycles,
and complete bipartite and multipartite graphs. They also introduced a related function, the
strong rainbow connection number src(G), which is the minimum number of colours required
to colour the edges of G such that any two vertices are connected by a rainbow geodesic.
Since then, the rainbow connection subject has attracted considerable interest. These include
the study of rc(G) in relation to the minimum degree, or forbidden subgraphs, or diameter
of G, or when G is regular. Further related functions have also been introduced, such as
the rainbow vertex connection number rvc(G), which is the version with vertex-colourings,
and the rainbow k-connection number rck(G), which is the version involving edge-colourings
where any two vertices of G are connected by k internally vertex-disjoint rainbow paths
(here, G is a k-connected graph). See for example, Caro et al [1], Chartrand et al [3], Fujita
et al [4], and Krivelevich and Yuster [5]. Recently, Li and Sun published a survey [6] and a
book [7] on the current status of rainbow connection.

Here, we introduce the rainbow connection notion for hypergraphs. We only consider
hypergraphs which are finite, undirected and without multiple edges. An obstacle in the
hypergraphs setting is that the notion of a path is not obvious. To clarify this, we will
actually consider two types of paths. Firstly, for ℓ ≥ 1, a Berge path, or simply a path,
is a hypergraph consisting of a sequence v1, e1, v2, e2, . . . , vℓ, eℓ, vℓ+1, where v1, . . . , vℓ+1 are
distinct vertices, e1, . . . , eℓ are distinct edges, and vi, vi+1 ∈ ei for every 1 ≤ i ≤ ℓ. Secondly,
for ℓ ≥ 1 and 1 ≤ s < r, an (r, s)-path is an r-uniform interval hypergraph where the
intervals can be linearly ordered so that consecutive intervals intersect in s vertices.

An edge-coloured path or (r, s)-path is rainbow if its edges have distinct colours. For a
connected hypergraph H, the rainbow connection number of H, denoted by rc(H), is the
minimum number of colours required to colour the edges of H such that any two vertices
are connected by a rainbow path. Similarly for 1 ≤ s < r, let Fr,s be the family of the
hypergraphs where any two vertices are connected by an (r, s)-path. For H ∈ Fr,s, the
(r, s)-rainbow connection number of H, denoted by rc(H, r, s), is the minimum number of
colours required to colour the edges of H such that any two vertices are connected by a
rainbow (r, s)-path.

Hence, we have two generalisations of the rainbow connection number from graphs to
hypergraphs. There are good reasons as to why we consider both generalisations. We
consider the version with Berge paths because this covers the situation for a larger class of
hypergraphs, namely, all connected hypergraphs, rather than just the class Fr,s for the (r, s)-
paths version. On the other hand, for many hypergraphs, the version with the (r, s)-paths
is more interesting than the one with the Berge paths.

We shall present some results about the functions rc(H) and rc(H, r, s). Firstly, note
that we have rc(H, r, s) ≥ rc(H) for all 1 ≤ s < r and H ∈ Fr,s.

Proposition 1 Let r ≥ 3 and 1 ≤ s 6= s′ < r. Then, rc(H, r, s) − rc(H) can be arbitrarily
large for H ∈ Fr,s, and rc(H, r, s)− rc(H, r, s′) can be arbitrarily large for H ∈ Fr,s ∩ Fr,s′ .
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Hence, Proposition 1 says that the functions rc(H), rc(H, r, s) and rc(H, r, s′) are “sep-
arated” from one another, and in the latter case, we cannot bound one of rc(H, r, s) and
rc(H, r, s′) in terms of the other.

Next, note that we have rc(H) ≤ e(H). Our next result characterises those hypergraphs
H where rc(H) = e(H). A hypergraph H with e(H) ≥ 1 is minimally connected if H is
connected, and (V (H), E(H) \ e) is disconnected for every e ∈ E(H).

Theorem 2 Let H be a connected hypergraph with e(H) ≥ 1. Then, rc(H) = e(H) if and
only if H is minimally connected.

We remark that in the simple graphs setting, a graph is minimally connected if and only
if it is a tree. However, this fact does not carry over to hypergraphs. That is, minimally
connected hypergraphs are generally not hypertrees, and vice versa. Hence, we do not
necessarily have rc(H) = e(H) if H is a hypertree.

Finally, we consider rc(H, r, s) for certain hypergraphs H. For 2 ≤ r < n, let Cr
n denote

the r-uniform cycle on n vertices, where every r consecutive vertices form an edge.

Theorem 3 Let 1 ≤ s < r < n. Then for sufficiently large n, we have rc(Cr
n, r, s) =

n
2(r−s) + cr,s, where cr,s depends on r and s.

For t ≥ r ≥ 3 and 1 ≤ n1 ≤ · · · ≤ nt, let Kr
n1,...,nt

denote the r-uniform complete
multipartite hypergraph with class sizes n1, . . . , nt.

Theorem 4 Let t ≥ r ≥ 3, s ≤ r − 2 and 1 ≤ n1 ≤ · · · ≤ nt be such that nt = 1 or
n2(t−r)+s+1 ≥ 2. Then,

rc(Kr
n1,...,nt

, r, s) =

{

1 if nt = 1,

2 if nt ≥ 2.

Theorem 5 Let t ≥ r ≥ 3, 1 ≤ n1 ≤ · · · ≤ nt, n = nt and b =
∑

S∈[t−1](r−1)

∏

i∈S ni, where
[t− 1](r−1) denotes the family of subsets of {1, . . . , t− 1} with size r − 1. Then,

rc(Kr
n1,...,nt

, r, r − 1) =























1 if nt = 1,

⌈ b
√
n ⌉ if t = r and n1 = 1,

min(⌈ b
√
n ⌉, r + 2) if t = r and n1 ≥ 2,

min(⌈ b
√
n ⌉, 3) if t > r.
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Extended Abstract

The minmax degree of a graph G, denoted by M∗(G), is the greatest integer k such that
each edge of G is incident to a vertex with degree at least k.

In this talk we will present some results on the minmax degree of the family of planar
graphs without cycles of length 4 and minimum degree at least 2 (in the following we
will denote by δ(G) the minimum degree of the graph G). This graph invariant has some
interesting applications for the edge decomposition problem, from which we can derive some
corollaries on the marking game.

If the edge set of the graph G can be partitioned into two subsets F and D such that
G[F ] the graph induced by F is a forest and G[D] the graph induced by D is a subgraph
with maximum degree at most d, then G is said (1, d)-coverable. Minmax degree and edge
decomposition are related by the following theorem due to He et al.:

Theorem 1 (He et al. [1]) Let G be a graph. If every subgraph H of G has M∗(H) ≤ k
or δ(H) ≤ 1, then G is (1, k)-coverable.

The marking game on a graph G, introduced by Zhu in [2], is a two-player non-cooperative
game: Alice and Bob take turns selecting an unselected vertex of G, establishing a linear
order over the vertices of G. The back degree of a vertex v of G is the number of neighbors
of v selected before v, and the score of the game is equal to 1 + b, where b is the maximum
back degree among the vertices of G. Alice has to minimize the score and Bob to maximize
it. The game coloring number colg(G) of G is the greatest score of a game on G when Alice
uses her optimal strategy.

The following lemma gives the link between edge decomposition and marking game.

Lemma 2 (He et al. [1], Zhu [2], Faigle et al. [3]) Let G be a (1, k)-coverable graph.
We have colg(G) ≤ k + 4.

The minmax degree of a planar graph with δ(G) ≥ 2 cannot be bounded, since K2,n has
a minmax degree equal to n. However, we can characterize the minmax degree of a planar
graph G using its 2-stackability S2(G), that is the least integer k such that each couple of
vertices has at most k common neighbors of degree 2:

Theorem 3 (C., M., R. [4]) Let G be a planar graph with δ(G) ≥ 2. We have M∗(G) ≤
5(S2(G) + 2).

Tight bounds are known for planar graphs with minimum degree at least 3 (see [5, 6, 7]),
or for planar graphs with δ(G) ≥ 2 and girth at least 5 (see [1]). Consider now the family
of planar graphs without cycles of length 4. Borodin et al. proved the following theorem:

Theorem 4 (Borodin et al. [8, 9]) Let G be a planar graph with δ(G) ≥ 2.

• If G does not have 4-cycles, then M∗(G) ≤ 7.

• If G does not have 4- and 5-cycles, then M∗(G) ≤ 5.

• If G does not have cycles of length 4 to 7, then M∗(G) ≤ 4.

• If G does not have intersecting triangles and cycles of length 4 to 9, then M∗(G) ≤ 3.

In this talk we will present the following result:
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Theorem 5 Let G be a planar graph with δ(G) ≥ 2. If G does not have 4- and i-cycles, for
i ∈ {6, 7, 8, 9}, then M∗(G) ≤ 5.

We will give the proof of the case i = 6 and a sketch of proof for the cases 7 and 9.
Moreover we will exhibit examples of planar graphs G with δ(G) ≥ 2 and without 4- and

i-cycles for i ∈ {5, 7, 9} and with minmax degree 5, proving that for the case i ∈ {5, 7, 9}
the upper bound cannot be improved.
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Extended Abstract

All graphs considered in this paper are simple. That is, they have neither loops nor
multiple edges. Let G be a graph. The square of G, denoted G2, is the graph obtained from
G by adding edges joining those pairs of vertices whose distance from each other in G is two.
A graph is panconnected if, between any pair of distinct vertices, it contains a path of each
length at least the distance between the two vertices.

A cut edge xy of G is termed an internal cut edge if both the degrees of x and y in G
are at least 2.

Theorem 1 (Chia, Ong, Tan ’2009 [2]) Let G be a graph. If G2 is panconnected, then
G contains no internal cut edge.

If G is a connected graph, then the number c(G) = |E(G)| − |V (G)| + 1 is called the
cyclomatic number of G. The problem of characterizing graphs with given cyclomatic num-
ber having panconnected square was first posed and studied in [2] where the authors showed
that if c(G) = 0, then G2 is panconnected if and only if G ∼= K1,n, the tree with all vertices
but one of degree 1. This is in fact a direct consequence of Theorem 1 since c(G) = 0 if and
only if G is a tree. The authors in [2] went on to characterize graphs G with c(G) = 1 and
G2 is panconnected.

An SF graph is a graph consisting of a cycle x1x2 . . . xmx1 together with a set of inde-
pendent vertices Ai (which may be empty) each joining to the vertex xi, i = 1, 2, . . . ,m.

Theorem 2 (Chia, Ong, Tan ’2009 [2]) Let G be a unicyclic graph. Then G2 is pan-
connected if and only if G is an SF graph with some degree-2 vertex.

The case c(G) = 2 and G2 is panconnected was completely settled in [1].
In the present paper, we investigate the case c(G) = 3 and G2 is panconnected. First, we

show that a graph with this property must belong to one of the 8 families of graphs denoted
F1,F2, . . . ,F8. We then define three large families of graphs which are generalization of the
families F1,F2 and F5. Necessary and sufficient conditions for these three large families of
graphs to have panconnected square are determined. Hence the classification of graphs in
F1,F2 and F5 having panconnected square follows as a byproduct of these results.

In proving these results, we make use of a well-known theorem of Fleischner [3] which
states that if G is a connected graph, then G2 is panconnected if and only if G2 is Hamilton-
connected.
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Extended Abstract

The Erdős-Hajnal conjecture states that for every graph H , there exists a constant δ(H) > 0,
such that if a graph G has no induced subgraph isomorphic to H , then G contains a clique
or a stable set of size at least |V (G)|δ(H). This conjecture is still open. We consider a variant
of the conjecture, where instead of excluding H as an induced subgraph, both H and Hc

are excluded. We prove this modified conjecture for the case when H is the five-edge path.
Our second main result is an asymmetric version of this: we prove that for every graph G
such that G contains no induced six-edge path, and Gc contains no induced four-edge path,
G contains a polynomial-size clique or stable set.
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Extended Abstract

Since the 1950s, search, a mechanism for visiting the vertices and edges of a graph, has
been a fundamental technique in the design of graph algorithms. Recently some algorithms
were proposed made up with a series of consecutive graph searches [4], these algorithms
are also called multisweep algorithms. Here we study a particular case of multisweep
algorithms, for which it exists some rule for the composition of searches. To do so we focus
on the ordering of the vertices as the result of a graph search, now we can compose graph
searches in a natural way, since graph searches can be viewed as operators acting on graphs
and producing total orderings of the vertices.

Therefore we can denote by M(G, x0) the order of the vertices obtained by applying a
graph search M on G starting from the vertex x0. An easy rule to compose graph search
is just to start a new search from the last vertex visited by the previous search. This idea
has been successfully used with Breadth First Search for efficient diameter evaluation and
computation in graphs [8, 5]. Another interesting compositional rule, namely the + Rule
was already used in some graph algorithms, mainly based on Lexicographic Breadth First
Search (LBFS for short) [1].

Definition: Let M be a graph search and σ an ordering of the vertices of G, M+(G, σ)
be the ordering of the vertices obtained by applying M on G starting from the vertex σ(1)
and tie-breaking using σ in decreasing order.

Using this + Rule, we can now consider the following process:
Step 0: σ = M(G, x0)
Step 1: M1(G, σ) = M+(G, σ)
Step 2: M2(G, σ) = M+(G,M+(G, σ))
. . .
Step i: M i(G, σ) = M+(G,M i−1(G, σ))
. . .
This leads to very natural problems : what are the properties of these orderings ? What

is the behavior of this infinite sequence of orderings ? Using the + rule, the sequence cannot
have a fixed point, but since the graphs we consider are finite this sequence is necessarily
periodical. Could this orbit be of size 2, in other words the question is :

Question: For which search M and graph G does there exist fixed points (i.e. some
index i for which M i(G, σ) and M i−1(G, σ) are two reverse orderings or M i+1(G, σ) =
M i−1(G, σ))?

In this case, the process will infinitely alternate between the orderings σ and τ , dual
orderings via the + rule and using an abus de language we can say that the above compu-
tational process has a quasi-fixed point.

The + Rule forces to keep the ordering of the previous sweep in case of
tie-break and therefore using a series of searches one can incrementally discover some
graph structure and uses this paradigm to design recognition algorithms for special classes
of graphs. This yields simple algorithms which are very easy to program, however their
proof could be difficult since we do not yet have good tools to analyze such algorithms. Our
general aim is to find general tools for proving fixed point properties of such algorithmic
schemes.

In particular using this idea, Corneil and Kőhler [2] proved that a series of consecutive
LBFS applied on an interval graph produces a linear ordering of the vertices which charac-
terizes it (from this ordering which also produces a linear order of the maximal cliques of
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the graph, the interval representation can be easily obtained). In fact Corneil and Kőhler
proved that O(n) consecutive LBFS are enough to produce an interval representation.

A similar property has been used in a recent linear time interval graph recognition algo-
rithms [4]. To achieve linearity this algorithm uses five consecutive LBFS, and terminates
using a modified LBFS (which uses a different tie-break based on the two previous ones).

Here we study the generalization of Corneil and Kőhler’s result to cocomparability graphs
(graph whose complement can be transitively oriented).

Definition: For a total ordering τ of the set of vertices, an umbrella is a triple of vertices
a, b, c ∈ X such that: a <τ b <τ c and ac ∈ E and ab, bc /∈ E.

A co-comparability (co-comp for short) ordering is an umbrella-free total ordering of the
vertices of G. The following result was first noticed in [7].

Proposition: G is a co-comparability graph iff it admits a co-comp ordering.

In fact we prove that a series of O(n) consecutive LBFS applied on a cocomparability
graph produces a cocomp ordering. In order to prove this result we first establish structural
properties of the maximal clique lattice of the cocomparability graph, and study the trace
of LBFS on this lattice.
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Extended Abstract

We introduce a canonical decomposition of strongly connected graphs that we call the
atomic decomposition. We can construct it in linear time from the canonical decomposition
in 3-connected components of the considered graph. With it, we study Gauss words : these
words are associated with self-intersecting closed curves in the plane. We characterize, up to
homeomorphism, all such curves with a given Gauss word. We extend this characterization
to tuples of words, associated with tuples of closed curves in the plane.

Knuth has introduced a similar but different decomposition of the same graphs that is
not canonical (it is not uniquely associated with a graph), but its indecomposable elements
are the vertices. We will compare it to the atomic decomposition.
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Extended Abstract

Introduction. Linearity and contiguity are graph parameters introduced to obtain efficient
codings of neighborhoods in graphs, by decomposing each neighborhood as a union of p
intervals chosen in one or several orders on the vertices [1]. Indeed, storing an order of the
vertices as well as a pair of pointers for each of the p intervals of this order (one pointer for
the beginning of the interval and one for the end), with fixed p, allows to store the graph in
O(n) space (instead of O(n +m) with adjacency lists) and access the neighborhood of any
vertex v in O(d) time (instead of O(n) with adjacency matrices), where d is the degree of v.

More formally, a closed p-interval-model of a graph G = (V,E) is a linear order σ on
V such that ∀v ∈ V, ∃(I1, . . . , Ip) ∈ (2V )p such that ∀i ∈

∫

1, p, Ii is an interval of σ and
N [x] =

⋃

1≤i≤p Ii. The closed contiguity of G, denoted by cont(G), is the minimum integer
p such that there exists a closed p-interval-model of G. A closed p-line-model of a graph
G = (V,E) is a tuple (σ1, . . . , σp) of linear orders on V such that ∀v ∈ V, ∃(I1, . . . , Ip) ∈ (2V )p

such that ∀i ∈
∫

1, p, Ii is an interval of σi and N [x] =
⋃

1≤i≤p Ii. The closed linearity of
G, denoted by lin(G), is the minimum p such that there exists a closed p-line-model of G.

Not much is known about these parameters, which cannot be bounded by a constant
even in very restricted graph classes, like interval or permutation graphs [1]. We focus here
on the contiguity and linearity of cographs (graphs without induced P4 subgraphs), whose
very constrained structure can be represented by their cotree, a rooted tree with two kinds
of nodes labeled by P and S, giving a tight upper bound for the asymptotic contiguity of
cographs and an upper bound for their linearity. To this aim, we first establish a min-max
theorem on the link between the rank of rooted trees and their decompositions into paths.

A min-max theorem on the rank of a tree. The rank [2, 3] of a tree T is the
maximal height of a complete binary tree obtained from T by edge contractions, that is
rank(T ) = max{h(T ′) | T ′ complete binary tree, minor of T }.

A path partition of a tree T is a partition {P1, . . . , Pk} of V (T ) such that for any i,
the subgraph T [Pi] of T induced by Pi is a path, as shown in Figure 9(a). The partition
tree of a path partition P , denoted by Tp(P) and illustrated in Figure 9(b), is the tree
whose nodes are Pi’s and where the node of Tp(P) corresponding to Pi is the parent of the
node corresponding to Pj iff some node of Pi is the parent in T of the root of Pj . The
height of a path partition P of a tree T , denoted by h(P), is the height h(Tp(P)) of its
partition tree. The path-height of T is the minimal height of a path partition of T , that is
ph(T ) = min{h(P) | P path partition of T }.

(a) (b)

Figure 9: A tree T and a path partition P = {P1, P2, P3, P4, P5, P6} of T (a), as well as the
partition tree of P (b).
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Lemma 1 For a rooted complete binary tree T , rank(T ) = ph(T ) = h(T ).

Theorem 2 For any rooted tree T , we have rank(T ) = ph(T ).

Upper bounds for contiguity and linearity of cographs. We now combine the
results of the previous section with a decomposition of the cotree of the input cograph into
paths, in order to obtain a constructive proof that the contiguity of any cograph is at most
O(log n). This decomposition is obtained recursively, using a root-path decomposition of
the cotree, thanks to the Caterpillar Composition Lemma below.

A root-path decomposition (see Fig. 10) of a rooted tree T is a set {T1, . . . , Tp} of disjoint
subtrees of T , with p ≥ 2, such that every leaf of T belongs to some Ti, with i ∈ [1..p], and
the sets of parents in T of the roots of Ti’s is a path containing the root of T .

Figure 10: The root-path decomposition {T1, . . . , Tp} of a rooted tree T .

Lemma 3 (Caterpillar Composition Lemma) Given a cograph G = (V,E) and a root-
path decomposition {Ti}1≤i≤p of its cotree, where Xi is the set of leaves of Ti, cont(G) ≤
2 + max

i∈[1..p]
cont(G[Xi]).

Lemma 4 Given a rooted tree T such that rank(T ) = k ≥ 1, there exists a root-path
decomposition {T1, . . . , Tp} of T such that for each i ∈ [1..p], rank(Ti) ≤ k − 1.

Lemma 5 Let G be a cograph and T its cotree. We have cont(G) ≤ 2 rank(T ) + 1.

Theorem 6 The closed contiguity of a cograph is at most logarithmic in its number of
vertices, or more formally, if G = (V,E) is a cograph, then cont(G) ≤ 2 log2 |V |+ 1.

Lower bounds for contiguity and linearity of cographs. Finally, we focus on
cographs whose cotrees are complete binary trees, and obtain a tight lower bound for their
asymptotic contiguity as well as a lower bound for their asymptotic linearity.

Theorem 7 Let G be a cograph whose cotree is a complete binary tree. Then, cont(G) =
Ω(logn) and lin(G) = Ω(log n/ log logn).
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Extended Abstract

The well-known two-sided matching problem has many applications in economics, com-
puter science and other disciplines (see [2], [4], [5]). It was introduced by Gale and Shapley
in their famous paper [3] and presented in the simplest setting as a problem of forming
marriages between n men and n women (interchangeably, as a college admission problem of
size n). The key concept in the Gale-Shapley theory is the concept of stability of a given
set of marriages. It can be expressed in the graph theory language as a perfect matching
problem in a complete bipartite graph Kn,n that satisfies some additional requirements. In
this model, each vertex v has assigned a preference list consisting of all the vertices of the
opposite bipartition set, whose elements are linearly ordered by

v≺. A perfect matching N of
such a graph is not stable if there are vertices x, y from different bipartition sets, such that
xy /∈ N and for a, b satisfying xa ∈ N , yb ∈ N there hold a

x≺ y and b
y
≺ x. It can be easily

proved that for given preferences there exists at least one stable perfect matching (stable
set of marriages, see [3]), but counting the exact number of all stable perfect matchings
remains an open question till today. Some lower bounds on the maximum number of all
stable perfect matchings, in the problem of size n, are known (see [1], [2]), but no non-trivial
upper bound is not known yet.

In this work we give some upper bounds on the maximum number of stable matchings
in the Gale-Shapley model (Theorems 1, 2). Using some graph terms, we also compute
the exact number of such matchings, when the preferences are fixed (Theorem 3). Some
sufficient conditions for the uniqueness of a stable matching in the Gale-Shapley model of
even size are given (Theorem 4). The result on the existence of exactly two stable matchings
in the problem of odd size, satisfying the same conditions, can be found too (Theorem 5).

We start with two finite n-element sets, say, the set of women W ={W1, . . . ,Wn} and the
set of men M={M1, . . . ,Mn}. Each man and each woman linearly orders all the members
of the opposite sex. The preferences of the sexes are represented by two tables W and
M, each of n2 elements (of size n). The ith row of the table W shows preferences of
Wi and is of the form Mi1 , . . . ,Min , where {Mi1 , . . . ,Min} = M (referring to it we write
(Wi : Mi1 , . . . ,Min)). This notation informs us that for l < m the woman Wi prefers Mil to
Mim . If there are exactly a men, who are worse than Mj for Wi, then notation (Wi : Mj, a)
is used. Analogous description for the table M will be applied. In the case, when we only
know, or we are only interested in, some parts of this list, the symbol "|" substitutes possible
elements of the list. For instance, (Wi : |Mi1 ,Mi2 |Mi3 |) means that Wi prefers Mi1 to Mi2 ;
Mi1 to Mi3 ; and Mi2 to Mi3 . Moreover at W ′

i s list of preferences there is no element of
the set M located between Mi1 and Mi2 . Similarly, (Wi : Mi1 ,Mi2 |Mi3 |) denotes all the
assertions implied by the notation (Wi : |Mi1 ,Mi2 |Mi3 |) with additional information that
Mi1 is the first element at W ′

is list of preferences.

By σ(W,M) we denote a number of all stable perfect matchings in a complete bipartite
graph with vertex bipartition (W , M) and vertex preferences given by W,M.

Theorem 1 Let n ≥ 2. If W and M are given tables of preferences of size n, then

σ(W,M) ≤
3n2 − 4n+ 1

4
(n− 2)! for n odd, and

σ(W,M) ≤
3n2 − 2n

4
(n− 2)! for n even,

which means that in both cases σ(W,M) is not greater than three quarters of all possible
matchings.
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In what follows Xa,b(W,M) = {(i, j) : (Wi : Mj , a) and (Mj : Wi, b)}.
Theorem 2 Let n ≥ 2 be an even integer. If W and M are tables of preferences of size n
and there exist a, b ∈ {0, . . . , n− 1} such that a ≤ n

2 − 1 and b ≤ n
2 − 1 and Xa,b 6= ∅, then

σ(W,M) ≤
3n2 − 4n

4
(n− 2)!.

In the theorem below the symbol Fk
s (W,M) denotes a set of k-matchings produced by

s 2-matchings in a special graph defined by W and M.

Theorem 3 Let n ≥ 2. If W and M are tables of preferences of size n, then

σ(W,M) = n! +

n(n−1)∑

s=1

(−1)s
n∑

k=2

(n− k)!|Fk

s (W,M)|.

We shall say that tables of preferences W, M of size n satisfy conditions (∗) if the
following hold:

1. (W1 : M2,M1|), and

2. (Wn−1 : Mn−2,Mn−1|Mn|M1|), and

3. (Wi : Mi−1,Mi|) for i ∈ [n] \ {1, n− 1}, and

4. (M1 : Wn−1,W1|), and

5. (M2 : Wn,W2, |W3|W1|), and

6. (Mn : Wn−1,Wn|), and

7. (Mi : Wi−2,Wi|) for i ∈ [n] \ {1, 2, n}.
Theorem 4 Let n ≥ 4. If W and M are tables of preferences of even size n that satisfy
the conditions (∗), then σ(W,M) = {σ1}, where σ1(i) = i for all i ∈ [n].

Theorem 5 Let n ≥ 5. If W and M are tables of preferences of odd size n that satisfy the
conditions (∗), then σ(W,M) = {σ1, σ2}, where

1. σ1(i) = i for all i ∈ [n], and

2. σ2(i) = i for all odd i ∈ [n− 2] and σ2(n) = 2, σ2(n − 1) = n, σ2(n − i) = n− i + 2
for all odd i ∈ {3, . . . , n− 2}.
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Extended Abstract

The Lovász Local Lemma is a powerful tool to obtain existential proofs of upper bounds
on coloring parameters in graphs. While the order of magnitude of these bounds is most of
the time best possible, the multiplicative constant factor is in general far from the optimal.
Using the ideas popularized by Moser and Tardos in their algorithmic proof of the Local
Lemma [7], based on entropy compression, some work has recently been done to obtain
singnificant improvements on theses constants in the context of non-repetitive coloring of
graphs [3, 5]. The aim of this paper is to show that these ideas can be applied to a broad
variety of graph coloring problems. To illustrate the general technique, we apply these ideas
to acyclic edge-colorings of graphs.

An edge-coloring of a graph G is acyclic if it is a proper edge-coloring (adjacent edges
have different colors) and every cycle contains at least three colors. A corollary of a general
theorem of Alon et al. [1] proved using the Lovász Local Lemma is that every graph with
maximum degree at most ∆ has an acyclic edge-coloring with at most 64∆ colors. Molloy
and Reed [6] improved the bound to 16∆ in 1998, and this was recently improved by Ndreca
et al. [8] to 9.62∆. Here we improve the bound further to 4∆. Alon et al. [2] conjectured
in 2001 that the right bound should be ∆+ 2 (only one more than the bound of Vizing for
proper edge-coloring).

Our proof is based on the analysis of a very simple algorithm. Order the edges of G
as e1, . . . , em, and do the following at each step: take the non-colored edge with smallest
index, say ei, and assign it a random color in {1, . . . , 4∆} that does not appear on some
edge adjacent to ei. If some bicolored cycle is created, then uncolor ei and all the other
edges on this cycle except two of them. This way, we maintain a partial edge-coloring that
is acyclic at each step. We show that this algorithm terminates with non-zero probability,
which implies that G has an acyclic edge-coloring with at most 4∆ colors.

In order to analyse this randomised algorithm running on a deterministic instance, we
consider it instead as a deterministic algorithm taking a large vector with random entries
as input. Take some large integer t, and consider any vector F ∈ {1, . . . , 2∆}t. At step i of
the algorithm, the i-th entry Fi of F is used to assign a color among the set {1, ..., 4∆} to
the non-colored edge ej with smallest index, in such a way that the coloring is proper and
there is no bicolored cycle of length four containing ej (these two requirements lead to a set
of at most 2∆ forbidden colors for ej , so at least 2∆ colors from the set {1, ..., 4∆} remain
available for ej).

The key of the analysis is to keep a (compact) record of each step of the algorithm, in such
way that at any step i, the record until step i and the partial coloring at step i are enough
to deduce all the entries Fj , j ≤ i. To do so, we define a vector R = (Ri)i≤t with t entries,
entry Ri corresponding to the record at step i. Assume that at step i of the algorithm,
the edge ej was colored and a bicolored cycle was created, say C = ei1 , . . . , ei2k , ei1 with
ei1 = ej and k ≥ 3. Observe that there are at most ∆2k−2 cycles of length 2k containing ej ,
so we can fix an order on such cycles (say the lexicographic order), as C1, C2, . . . , Cs, with
s ≤ ∆2k−2. In this case we uncolor all the edges of C except e2 and e3, and we set the i-th
entry Ri of R to be equal to the pair (k, ℓ), where ℓ ≤ s is the index of C among all cycles
of length 2k containing ej . If no bicolored cycle is created at step i, Ri is left empty.

Let Ft be the set of vectors F such that at step t of the algorithm, the graph G has not
been completely colored. Let Rt be the set of records R that can be produced with inputs
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from Ft. Since one record together with one partial coloring determines at most one input
vector F , we have:

Lemma 1 |Ft| ≤ (4∆ + 1)m|Rt|.

To count the number of possible records |Rt|, we transform any record R into a binary
word R◦ which is a partial Dyck word with all maximal sequences of 1 of even size and
strictly greater than 2. Moreover, the preimage of a word R◦ has size at most ∆t under this
transformation. Using the method described by Flajolet and Sedgewick in [4], we can bound
the number of possible words R◦ and deduce the following result:

Lemma 2 There is a constant c > 0 such that |Rt| ≤ ct−3/2(2∆)t.

Hence, if t is large enough, |Ft| < (2∆)t. As a consequence, there is at least one vector
F for which the algorithm terminates, leading to the following theorem.

Theorem 3 If G has maximum degree ∆, then G has an acyclic edge-coloring with at most
4∆ colors.

The same method can be used to improve existing bounds when the graph G has larger
girth (length of a shortest cycle):

Theorem 4 Let G be a graph with maximum degree ∆ and girth g. Let a′(G) be the mini-
mum of colors in an acyclic edge-coloring of G.

1. If g ≥ 7, a′(G) ≤ 3.74∆;

2. if g ≥ 53, a′(G) ≤ 3.14∆;

3. if g ≥ 220, a′(G) ≤ 3.05∆.

This method can be also used for star colorings and more generally for graph colorings
that can be defined using forbidden configurations of colors of a given list of graphs. From
an algorithmic point of view, if one asks for an acyclic edge-coloring with (4 + ǫ)∆ colors
(for some ǫ > 0) instead of 4∆ colors, the procedure stops in expected polynomial time.
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Extended Abstract

In paper [1] the recognition and isomorphism problems for circulant graphs were solved
in polynomial time. The solution required in particular a deeper study of circulant Schur
rings and Cayley schemes including resolving singularities for them and their automorphism
groups. This activity was further developed in paper [2]. The theorem formulated below
contains several important properties of the automorphism groups of circulant graphs.

Here by a circulant graph we mean any kind of Cayley graph over a finite cyclic group G.
For a transitive permutation group Γ on G by a Γ-section we mean a quotient S = U/L
where U and L are subgroups of G being blocks of Γ. The restriction ΓS of Γ to S is by
definition the restriction to U/L of the U -stabilizer in Γ. Following H. Wielandt we say that
two permutation groups on G are 2-equivalent if they have the same orbits with respect to
their coordinate-wise actions on the set G×G.

Theorem 1 Let Γ be the automorphism group of a circulant graph. Then

(1) The restriction of Γ to any primitive Γ-section S equals either the symmetric group
Sym(S) or a subgroup of the holomorph Hol(S) with |S| prime.

(2) Every non-abelian composition factor of Γ is isomorphic to an alternating group.

(3) The group Γ is 2-equivalent to a solvable group containing all translations if and only
if every alternating composition factor of Γ is of prime degree.

It should be remarked that statement (1) can be considered as a natural generalization of
the famous Burnside-Schur theorem on primitive permutation groups with a regular cyclic
subgroup (see [3]).

In fact Theorem 1 follows from the corresponding theorem on the automorphism groups
of circulant S-rings which was proved in [2]. In its turn the latter theorem is a consequence
of Theorem 2 below. Here given an S-ring A over a finite cyclic group G, by an A-section
we mean a quotient S = U/L where U and L are A-groups, i.e. subgroups of G that are
unions of basic sets of A. The restriction of A to S is denoted by AS . The section S is
called singular if rk(AS) = 2, |S| > 2 and A has certain restrictive structure with respect
to the class of projectively equivalent A-sections that contains S (for details see [2]). The
group Aut(A) equals by definition the automorphism group of the Cayley scheme over G
corresponding to A.

Theorem 2 Let A be a circulant S-ring. Then

(1) For any primitive A-section S one of the following statements holds:

(a) S is singular and then Aut(A)S = Sym(S),
(b) the order of S is prime and Aut(A)S ≤ Hol(S).

(2) There exists a subgroup Γ of Aut(A) such that Γ is 2-equivalent to Aut(A), contains
all translations, and for any singular section S of A we have ΓS = Hol(S) if the order
of S is prime, and ΓS = Sym(S) otherwise.

Corollary 3 If the order of S is composite, then S is singular and Aut(A)S = Sym(S).

This is a joint work with I. Ponomarenko.
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Constrained Homomorphism Orders
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Extended Abstract

For given graphs G = (VG, EG) and H = (VH , EH) a homomorphism f : G → H is a
mapping f : VG → VH such that (u, v) ∈ EG implies (f(u), f(v)) ∈ EH . If there exists a
homomorphism f : G → H we write G ≤ H . It is well known that ≤ (seen as a binary
relation) induce a quasi-order on the class of all finite graphs. The equivalence classes contain
up to isomorphism unique minimal representative, the graph core. The homomorphism order
is the partial order on graph cores induced by ≤.

The homomorphism order has been extensively studied, see [1]. It is a non-trivial result
that every countable partial order can be found as a suborder of the homomorphism order.
The initial result has been proved in even stronger setting of category theory. Subsequently
it has been shown that even more restricted classes of graphs and similar structures (in
particular the class of oriented paths) admit this universality property [3].

Pair of graphs (G,H) is called a gap if G < H and there is no G′ with G < G′ < H . All
gaps in the homomorphism order have been characterized. In fact the only gap is (K1,K2)
and thus the partial order is dense when this pair is removed. The structure of gaps is
richer on the homomorphism order of directed graphs and is closely related to the notion of
homomorphism dualities.

Several variants of graph homomorphism also have been studied (such as locally con-
strained homomorphisms, monomorphisms, embeddings, full homomorphisms and surjective
homomorphisms). We call those homomorphisms constrained homomorphisms. We consider
partial orders induced by constrained homomorphisms and ask the same questions — that
is to characterize cores, prove or disprove the universality of the partial order, characterize
gaps, etc.

Partial order is future-finite (or past-finite) if every up-set (or down-set) is finite. Partial
order is universal if it contains every countable partial order as suborder. Similarly partial
order is future-finite-universal (or past-finite-universal) if every future-finite (or past-finite)
partial order can be found as a suborder.

Denote by
−→
C k the directed graph formed by a cycle on k vertices with edges oriented in

one direction. Further denote by DiCycle the class of graphs formed by all cycles
−→
C k, k ≥ 3,

and DiCycles the class of graphs formed by disjoint union of finitely many graphs in DiCycle.
We give a new proof of universality of homomorphism order of restricted classes of graphs:

Theorem 1 The partial order induced on DiCycle by the existence of homomorphism is
future-finite-universal. The partial order induced on DiCycles by the existence of homomor-
phism is universal.

In this formulation the universality is surprisingly simple to prove (compared to the rather
technical proof of universality on the class of oriented paths in [3]). With this new univer-
sality argument we can characterize universality of all constrained homomorphisms orders
mentioned:

Theorem 2 1. Partial order implied by the existence of surjective homomorphism on the
class of all finite graphs is future-finite and future-finite-universal.

2. Partial orders implied by the existence of embedding, monomorphism or full homomor-
phism on the class of all finite graphs are past-finite and past-finite-universal.

3. Partial orders implied by the existence of locally injective, surjective or bijective homo-
morphism on the class of all finite graphs are universal.

64



4. Partial order implied by the existence of locally injective homomorphisms on the class
of all connected graphs is universal.

5. Partial orders implied by the existence of locally surjective or locally bijective homomor-
phisms on the class of all connected graphs are future-finite and future-finite-universal.

The results hold for directed or undirected graphs with or without loops allowed.
Observations about past-finiteness and future-finiteness of the partial orders make it easy

to answer other questions — the partial orders are not dense and dualities exists only in
rather simple cases (because either the down-set or up-set is finite).

We extend results of [1] about properties of order induced by locally constrained homo-
morphisms on connected graphs and give more detailed description of these partial orders.

A partition of the vertex set of a graph G into disjoint classes is called an equitable
partition if vertices in the same class have the same numbers of neighbors in all classes of the
partition. Any equitable partition is characterized by the associated degree matrix whose
rows and columns are indexed by the blocks of the partition, and the entry in the i-th row
and j-th column describes how many neighbors a vertex from the i-th block has in the j-th
block. Every finite graph G admits a unique minimal equitable partition. In this case a
canonical ordering can be imposed on the blocks, so the corresponding degree matrix, called
the degree refinement matrix, drm(G), is also uniquely defined. We put G∼H if and only if
drm(G) = drm(H).

With the help of degree refinement matrices we describe gaps:

Theorem 3 Let H be a connected graph.

(a) There exists connected graph G such that drm(G) = drm(H) and (G,H) is a gap in
locally injective homomorphism order iff H contains a cycle.

(b) There exists connected graph G, such that drm(G) 6= drm(H) and (G,H) is a gap in
locally injective homomorphism order iff H has at least one vertex of degree 1.

And density pairs:

Theorem 4 Let G and H be connected graphs such that drm(G) 6= drm(H), there is locally
injective homomorphisms G → H and H has no vertices of degree 1. Then:

(a) There exists connected graph F , such that there are locally injective homomorphisms
G → F and F → H, drm(F ) 6= drm(G) and drm(F ) 6= drm(H). This graph is strictly
in between G and H in the locally injective homomorphism order.

(b) When G has no vertices of degree 1 and H has at least one cycle with a vertex of degree
greater than 2, then F can be constructed to have no vertices of degree 1 and contain
a cycle with a vertex of degree greater than 2.

While the statements of both results may seem be technical, they generally show that the
partial order induced by locally injective homomorphisms can be seen as a combination of:
(1) the past-finite and past-finite-universal partial order on acyclic graphs (coinciding with
the embeddings), (2) a future-finite and future-finite-universal order within each non-trivial
equivalency class of ∼ and (3) a universal partial order in between graphs with different
degree decomposition matrices (dense when graphs with vertices of degree 1 are excluded).
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Bounding K4-minor-free graphs in the homomorphism order
Florent Foucaud 1 and Reza Naserasr 2

1 Univ. Bordeaux, LaBRI, UMR5800, F-33400 Talence, France.
2 Université Paris-Sud 11, LRI-CNRS, F-91405 Orsay, France.

Extended Abstract

A homomorphism of a graph G to a graph H is a mapping f from V (G) to V (H) such that
if two vertices are adjacent in G, their images by f are adjacent in H . A class C of graphs
is said to be bounded by some graph H if each graph of C admits a homomorphism to H ;
H is called a bound for C. It is of interest to ask for a bound having specicic properties
(e.g. having specific odd-girth) with smallest possible order. Such questions are studied e.g.
in [1].

The projective cube of dimension 2k, denoted PC(2k), is the graph obtained from the
hypercube of dimension 2k + 1 by identifying each pair of antipodal vertices. PC(2k) has
22k vertices and odd-girth 2k+1 (the odd-girth of a graph is the length of one of its shortest
odd cycles). For example, PC(2) is K4 and PC(4) is the Clebsch graph.

The following question was asked by R. Naserasr in [1]:

Problem 1 Given two integers r ≥ k, what is the smallest subgraph of PC(2k) to which
every planar graph of odd-girth 2r + 1 admits a homomorphism to?

R. Naserasr [1] showed that this question is related to many important theories and
captures problems such as edge-colouring, fractional colouring, and circular colouring planar
graphs. Motivated by this question, we study the analogous question for the class of series-
parallel graphs, i.e. K4-minor-free graphs. Let SP2k+1 be the class of series-parallel graphs
of odd-girth at least 2k + 1. We prove:

Theorem 2 PC(2k) is a bound for SP2k+1.

We use the previous theorem to give a reformulation of the question of finding a bound
of odd-girth 2k + 1 of smallest order for SP2k+1. We present partial answers for the first
three cases:

Theorem 3 The triangle K3, the Wagner graph and the graph G16 of Figure 11 are bounds
for SP3, SP5 and SP7, respectively.

Figure 11: Two drawings of the graph G16 that is a bound for SP7.
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Extended Abstract

A digraph D is said to be H-coloured if the arcs of D are coloured with the vertices of H .
We will denote by c(x, y) the color of the arc (x, y) ∈ F (D). An H-walk(path) is a directed
walk(directed path) C = (z0, z1, ..., zt) in D such that (c(z0, z1), c(z1, z2), ..., c(zt−1, zt)) is a
directed walk in H .
A set N of V (D) is said to be an H-kernel by paths(walks) in D if it satisfies the following
two conditions: 1) for every two different vertices u, v in N does not exist an H-path(walk)
between them and; 2) for every vertex x in V (D)−N there exists a vertex y in N such that
there is an H-path in D from x to y.
A digraph D is a strongly transitive digraph if for any vertices u, v, w ∈ V (D) (possibly
u = w) such that {(u, v), (v, w)} ⊆ A(D) implies (u,w) ∈ A(D).
Let H be a strongly transitive digraph (possibly with loops) and D a digraph H-coloured.
Let D1 and D2 be spanning subdigraphs of D. We will say that P = {D1, D2} is an
H-separation of D if:

1. F (D1)
⋂

F (D2) = ∅, F (D1)
⋃

F (D2) = F (D)

2. Every H-path of D is contained in D1 or it is contained in D2.

In this talk we will show that if H is a strongly transitive digraph and D is a digraph
H-coloured, P = {D1, D2} an H-separation of D such that:

1. Every cycle of D that is contained in Di is an H-cycle for i = 1, 2.

2. D does not contain a (D1, D,D2) H-subdivision of C3

3. If (u, z, w, x0) is a (D1, D,D2) H-subdivision of P3 then there exist an H-path between
u and x0.

Then D has a H-kernel by paths.
A γ-cycle in D is a sequence of different vertices, γ = (u0, ..., un, u0) such that for every
i ∈ {0, ..., n}: i) there exists a uiui+1 −H-path and; ii) there is no ui+1ui−H-path. We are
working in the generalization of the previous result to replace H-cycles by γ −H-cycles.
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Extended Abstract

One of the most famous algorithmic metatheorems is Courcelle’s theorem [2], which states
that every graph property expressible in MSO2 logic of graphs can be solved in linear (FPT)
time on graphs of bounded tree-width. More precisely, the MSO2 model-checking problem
for a graph G of tree-width tw(G) and a formula φ, i.e. the question whether G |= φ, can
be solved in time O(|G| · f(φ, tw(G))). As shown by Frick and Grohe [3], the function f
is, unavoidably, non-elementary in the parameter φ (unless P=NP). However, very recently
Gajarský and Hliněný [4] showed that there exists a FPT algorithm for MSO2 model checking
for the class of graphs of bounded tree-depth, with elementary dependency on the formula.

We would like to extend this result to a wider class of graphs, towards graphs of bounded
clique-width. To do so, we introduce two new graph parameters: shrub-depth and SC-depth.
Both of these parameters are based on the notion of tree-model, which can be seen as a
minimalistic analogue of graph interpretation into a tree of bounded height. Shrub-depth
and SC-depth are then defined in terms of the number of layers (the depth) such a tree-model
must have to be able to interpret a given graph.

We show that the classes of the graphs resulting from an MSO1 graph interpretation in
the class of all finite rooted trees of height ≤ d, with vertices labelled by a finite set of labels,
are exactly the classes of graphs of shrub-depth at most d. This result, in combination
with [4], leads to an FPT algorithm for MSO1 model checking for graphs of bounded shrub-
depth (SC-depth) with an elementary dependence on the formula.

We also introduce m-partite cographs, which are a natural extension of ordinary cographs.
We argue that m-partite cographs represent a smooth intermediate transition from the
shrub- and SC-depth to the significantly wider and established notions of clique-width [1]
and NLC-width [5]. Indeed, we show that all graphs in any class of shrub-depth d are m-
partite cographs with a representation of depth ≤ d, for suitable m. On the other hand,
every m-partite cograph has clique-width at most 2m. Finally, we show that the class of m-
partite cographs is well-quasi-ordered by the relation of “is an induced subgraph of”. This is
a significant result, which implies that a) testing whether a graph is an m-partite cograph is
a FPT problem, and b) deciding any hereditary property (i.e. property closed under taking
induced subgraphs) on this class is a FPT problem.
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Extended Abstract

Let G be a graph. A set Xi ⊆ V (G) is an i-packing if for any distinct pair u, v ∈ Xi,
dG(u, v) > i where dG(u, v) denotes the usual shortest path distance between u and v. For a
sequence of positive integers 1 ≤ s1 ≤ s2 ≤ . . . ≤ sk. The (s1, s2, . . . , sk)-coloring problem
((s1, s2, . . . , sk)-COL) is to find k si-packings in G, Xs1 , . . . , Xsk that form a partition of
G.
The (1, 1, . . . , 1)-coloring problem corresponds to the k-coloring problem (where k is the
number of 1) which is known to be NP-complete for k ≥ 3. (s1, s2, . . . , sk)-COL generalizes
coloring problems with distance constraints like finding the packing chromatic number [1] or
finding the distance chromatic number [2] of a graph.
The packing chromatic number of G is the least integer k such that the vertex set of G
can be partitioned into sets Xi, i = 1, . . . , k where each Xi being an i-packing. The d-
distance chromatic number [2] of G is the least integer k such that the vertex set of G can
be partitioned into sets X i

d, i = 1, . . . , k where each X i
d being a d-packing.

The complexity of (s1, s2, s3)-COL have been studied by Goddard et al. [1] in order to
find the complexity of the packing chromatic number when k = 4. They have proven that
(1, 1, 2)-COL is NP-hard and that (1, 2, 3)-COL is polynomial. Moreover, (2, 2, 2)-COL is
polynomial (as only paths of any length and cycles of length of multiple 3 are (2, 2, 2)-
colorable). The complexity of (1, 2, 2)-COL was an open question brought by Goddard et
al. The next theorem is an answer to this open question.

Theorem 1 (1, 2, 2)-COL is NP-hard.

The following result is signifiant, as it classifies the complexity of all instance of (s1, s2, s3)-
COL. However only the hardness of several problems near the bound betwen the two com-
plexity classes has a significative difficulty (like (1, 2, 2)− COL).

Theorem 2 (k1, k2, k3)-COL is polynomial if k1 ≥ 2 or if k1 = 1 and k2 ≥ 3 or if k1 = 1,
k2 = 2 and k3 ≥ 3. Otherwise (k1, k2, k3)-COL is NP-hard.

Our goal was to classify the complexity of all instance of (s1, . . . , sn)-COL. Some problem
has not been classified, however the two following theorems classify numerous problems of
(s1, . . . , sn)-coloring.

Theorem 3 Let n be a positive integer and ak = 2k − 1. (a1, a2, . . . , an, 3 × 2n−1 − 1,
3× 2n−1 − 1)-COL and (a1, a2, . . . , an, an, 3× 2n−1 − 1)-COL are NP-hard.

Theorem 4 Let n be an positive integer and ak be a sequence of n positive integer such that
1 ≤ a1 ≤ a2 ≤ . . . ≤ an. If

∑n
i=1

1
ai+1 < 1 then (a1, a2, . . . , an)-COL is polynomial.

Moreover, let odd: N∗ → N∗ be the map which associates n + 1 if n is even and n if n is
odd. If a1 = 1 then if

∑n
i=1

1
odd(ai)+1 < 1 then (a1, a2, . . . , an)-COL is polynomial.
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Extended Abstract

We consider the problem of assigning each vertex of a graph G a (short) label such that,
for every subset X of vertices of G and every vertex u of G \X , the connected component
of u in G \X can be (quickly) identified from the labels of u and those of all the vertices of
X .

For planar graphs with n vertices we present a new labeling scheme with O(log n)-bit
labels and O(log logn) query time after an almost linear time preprocessing of X . The
scheme is significantly simpler than previous solution due to Courcelle et al. [3] and the
query time is exponentially faster. Our solution generalized to Euler genus-g graphs, and
more generally to graphs having some constrained k-page embedding.

Introduction
A natural question in graph theory is to ask whether two vertices u, v are in the same

connected component of a graph G. This can trivially be done in linear time. Observe that
in linear time one can also assign to each vertex of G a label, so that the subsequent query
between u and v can be answered in constant time by inspecting the label of u and the label
of v only.

Understanding the evolution of connected components of a graph when some vertices or
edges are removed (or forbid) is of great importance for many applications, in particular
for Emergency Planning (cf. [4]). Connectivity with forbidden set of edges has been solved
almost optimally by [4] in general graphs. However, identifying the connected components
in a graph G with a forbidden-set X becomes a challenging question whenever X contains
more than two vertices, even if we are allowed to preprocess the graph.

In this paper we consider the problem of labeling the vertices of G such that, for every
forbidden subset X of vertices of G, and every vertex u of G \ X , one can identify the
component of u in G \X given the labels of u and the label of each vertex of X .

For this problem and for G planar, Courcelle et al. [3] have proposed a solution using
O(log n)-bit labels and O(log n) query time, after preprocessing X in time O(|X |2). We
propose an extension of this result to graphs embedded on a surface of Euler genus g (the
surface can be orientable or not).

Our contribution

Theorem 1 Every 3-connected n-vertex Euler genus-g map G admits a O(g logn)-bit label-
ing for forbidden-set connectivity queries. All the labels can be computed in time O(n + g).
Given a forbidden-set query X ⊂ V (G), one can preprocess X in time O(Sort(|X |+g, n+g)
so that one can subsequently identify in time O(Pred(|X |+ g, n+ g)) the connected compo-
nent of u in G \X, for every vertex u of G \X.

Here Sort(k, n) stands for the time complexity of sorting k integers ranging in {1, . . . , n},
and Pred(k, n) for the time complexity for predecessor search in a sequence of k sorted
integers in {1, . . . , n}. It is known that Sort(k, n) = O(k

√
log log k ) and Pred(k, n) =

O(log log (n/k)).
Our scheme is only based on combinatorial embedding (map) of the graph. For the

planar case (g = 0), our scheme is simpler than the one of Courcelle et al. [3], since it
does not require any computational geometry reduction and so avoids the Planar Point
Location bottleneck [2]. This results in an exponentional improvement of the query time.
These time bounds are comparable to those of the recent work of [1]. However, to the best
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of our knowledge, this latter scheme, restricted to planar graphs, does not convert into a
labeling scheme.

Outline of our construction
First, we compute in O(n+ g) time a cut-graph C of the surface embedding of the input

graph G. Recall that a cut-graph is a subgraph of G such that the surface obtained by
cutting along the edges of C is homeomorphic to a disc. We can ensure that the cut-graph
C is composed of a spanning tree of bounded degree plus O(g) edges.

By definition of C, cutting along its edges results in a map M whose all the vertices lie
on the border of C, i.e., an outerplanar map. Each vertex of G is associated with at most
O(g) vertices of M .

We construct a specific forbidden-set connectivity labeling for M and C. For the outer-
planar map M we obtain labels of O(log (gn)) = O(log n) bits with a scheme much simpler
and efficient than the general planar scheme of [3]. For the cut-graph C we develop an
ad-hoc scheme with O(g logn)-bit labels.

Our construction then uses a meta-scheme that allows us to identify the connected com-
ponent of any vertex u of G \X by querying the components of u in M \X and in C \X .
The preprocessing of X by our meta-scheme costs O(|X |+ g) once X has been sorted.

Acutally, our meta-scheme applies to a wider class of graphs, typically the graphs having
a k-page embedding (cf. [5] for definition) whose spine is constrained to be covered by a forest
of at most k trees of degree bounded by k. Labels are of size O(k logn) bits.

Conclusion
Our solution provides a query time of O(Pred(|X |, n)) (for fixed g), which can be proved

optimal even on a path with n vertices by a straightforward reduction to predecessor query.
Concerning the label length, our O(g logn)-bit solution can conceivably be improved. In fact,
one can show that Ω(

√
g + logn)-bit labels are required. In the light of our meta-scheme,

we leave open the problem of determining the optimal label length for genus-g graphs.
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Extended Abstract

We introduce the concept of constant 2-labelling of a weighted graph. Roughly speaking,
a constant 2-labelling of a weighted graph is a 2-coloring {•, ◦} of its vertex set which
preserves the sum of the weight of black vertices under some automorphisms.

The motivation about introducing such labellings comes from covering problems in
graphs. These lattest are coverings with balls of constant radius satisfying special mul-
tiplicity condition. Let G = (V,E) be a graph and r, a, b be positive integers. A set S ⊆ V
of vertices is an (r, a, b)-code if every element of S belongs to exactly a balls of radius r
centered at elements of S and every element of V \ S belongs to exactly b balls of radius r
centered at elements of S. Such codes are also known as (r, a, b)-covering codes [1], (r, a, b)-
isotropic colorings [1] or as perfect colorings [5]. For (r, a, b)-codes of the infinite grid with
|a− b| > 4 and r ≥ 2, constant 2-labellings help us to give all possible values of a and b.

The notion of (r, a, b)-codes generalizes the notion of domination and perfect codes in
graphs. An r-perfect code in a graph is nothing less than an (r, 1, 1)-code. Perfect codes
were introduced in terms of graphs by Biggs in [2]. It was shown by Kratochvil [4] that
the problem of finding an r-perfect code in graphs (i.e., an (r, 1, 1)-code) is NP-complete.
Moreover, this problem is even NP-complete in the case of bipartite graphs with maximum
degree three. For more information about perfect codes, see [3, Chapter 11].

Constant 2-labellings. Given a graph G = (V,E), a vertex v of G, a map w : V → R

and a subset A of the set Aut(G) of all automorphisms of G, a constant 2-labelling of G is
a mapping ϕ : V → {•, ◦} such that

∑

{u∈V |ϕ◦ξ(u)=•}

w(u) is constant for all ξ ∈ A• (respectively ξ ∈ A◦)

where A• = {ξ ∈ A | ϕ ◦ ξ(v) = •} (resp. A◦ = {ξ ∈ A | ϕ ◦ ξ(v) = ◦}). Observe that any
coloring using only one color is a constant 2-labelling. Such constant 2-labellings are called
trivial. Moreover, if ϕ is a constant 2-labelling of a graph G, then the coloring obtained by
exchanging colors is also a constant 2-labelling of G.

We look at weighted cycles with p vertices denoted by Cp. These vertices 0, . . . , p − 1
have respectively weights w(0), . . . , w(p − 1). We will represent such a cycle by the word
w(0) . . . w(p− 1). Let Rk denote a k-rotation of Cp, i.e.,

Rk : {0, . . . , p− 1} → {0, . . . , p− 1} : i 7→ i+ k mod p.

We set A = {Rk | k ∈ Z} and v = 0. A coloring ϕ : {0, . . . , p − 1} → {•, ◦} of a cycle Cp
is a constant 2-labelling if, for every k-rotation of the coloring, the weighted sum of black
vertices is a constant a (resp. b) whenever the vertex 0 is black (resp. white).

We consider eight particular weighted cycles Cp with at most 4 different weights, namely
z, x, y and t. The following words represent respectively cycles of Type 1–8 (see Figure 12) :

zxp−1, zx
p−2
2 tx

p−2
2 , z(xy)

p−1
2 , z(xy)

p−2
2 x, z(xy)

p−1
4 (yx)

p−1
4 ,

z(xy)
p−3
4 xx(yx)

p−3
4 , z(xy)

p−2
4 t(yx)

p−2
4 , z(xy)

p−4
4 xtx(yx)

p−4
4

with x 6= y and p ≥ 2. Note that the exponents appearing in the representation of cycles
must be integers. This implies extra conditions on p depending on the type of Cp. We can
give a characterization of all constant 2-labellings of these weighted cycles. For example, if
we set a =

∑

{u∈V |ϕ◦ξ(u)=•}w(u) and b =
∑

{u∈V |ϕ◦ξ′(u)=•} w(u) for ξ ∈ A•, ξ
′ ∈ A◦, then

we have the following result for Type 7 cycles.
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Type 2 : zx
p−2
2 tx

p−2
2 Type 5 : z(xy)

p−1
4 (yx)

p−1
4 Type 8: z(xy)

p−4
4 xtx(yx)

p−4
4

Figure 12: Types of weighted cycles Cp.

Lemma 1 For cycles Cp of Type 7, i.e., z(xy)
p−2
4 t(yx)

p−2
4 with t 6= x 6= y and 2 < p ∈ N,

if ϕ is a non trivial constant 2-labelling, then ϕ is either alternate with a = (p2 − 1)y + z
and b = (p2 − 1)x + t or p

2 -periodic with a = α(x + y) + t + z and b = (α + 1)(x + y) for
α ∈ {0, . . . , p

2 − 1}.

Application to (r, a, b)-codes. We will focus on the graph of the infinite grid Z2. we
consider balls defined relative to the Manhattan metric. We can view an (r, a, b)-code of Z2

as a particular coloring ϕ with two colors black and white where the black vertices are the
elements of the code. In other words, the coloring ϕ is such that a ball of radius r centered
on a black (respectively white) vertex contains exactly a (resp. b) black vertices.

For 2-colorings of the infinite grid satisfying specific periodicity properties, we will present
a projection and folding method that associates a weighted cycle to a ball of radius r in Z2.
For r ≥ 2, Puzynina [5] showed that every (r, a, b)-codes of Z2 are periodic. Moreover
Axenovich [1] gave a characterization of all (r, a, b)-codes of Z2 with r ≥ 2 and |a − b| > 4.
Using these results, we can apply our method to any (r, a, b)-codes with r ≥ 2 and |a−b| > 4.
The weighted cycles obtained by this procedure are of Type 1–8.

So, for r ≥ 2 and |a− b| > 4, there exists an (r, a, b)-code of Z2 if and only if there exists
a constant 2-labelling of some cycle Cp, with v = 0, A = {Rk | k ∈ Z} and a mapping w
defined as before, such that

a =
∑

{u∈V |ϕ◦ξ(u)=•}

w(u) and b =
∑

{u∈V |ϕ◦ξ′=•}

w(u) ∀ξ ∈ A•, ξ
′ ∈ A◦.

Hence, the concept of constant 2-labellings allows us to obtain a new characterization of
(r, a, b)-codes of Z2 with r ≥ 2 and |a− b| > 4. Moreover, we can give all the possible values
of constants a and b.
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Extended Abstract

In this extended abstract, we consider the size of acyclic sets in planar graphs and
digraphs. Our first motivation is the following well-known conjecture of Albertson and
Berman.

Conjecture 1 (Albertson, Berman ’79 [1]) Every n-vertex planar graph contains a set
of at least n/2 vertices that induces a forest.

It follows from a result of Borodin [2] that every n-vertex planar graph contains a set
of at least 2n/5 vertices that induces a forest. Salavatipour [12] proved Conjecture 1 for
triangle-free planar graphs in the following stronger form.

Theorem 2 (Salavatipour ’06 [12]) Every n-vertex triangle-free planar graph has a set
of at least 17n/32 vertices that induces a forest.

Stronger results were obtained by Kowalik et al. [7].
One way to generalize the problem of finding large forests in a graph is to think of coloring

it with forests. A partition of vertices of a graph G into classes V1 ∪ · · · ∪ Vk is an arboreal
partition if each Vi (1 ≤ i ≤ k) induces a forest in G. A function f : V (G) → {1, . . . , k} is
called an arboreal k-coloring if Vi = f−1(i), i = 1, . . . , k, form an arboreal partition. The
vertex-arboricity a(G) of the graph G is the minimum k such that G admits an arboreal k-
coloring. The following proposition is an easy consequence of 5-degeneracy of planar graphs.

Proposition 3 For every planar graph G, a(G) ≤ 3.

Clearly, showing that a(G) ≤ 2 for every planar graph G would imply Conjecture 1 (as
well as the Four Colour Theorem). However, there are known to exist planar graphs G with
a(G) = 3 (see, [3] and [11]).

It is, however, possible to strengthen Proposition 3 as follows.

Theorem 4 (Harutyunyan, Mohar ’12 [5]) Every planar graph has exponentially many
3-arboreal colorings.

In the same vein, one can also consider large acyclic sets in oriented planar graphs.

Conjecture 5 (Harutyunyan ’11 [4]) Every n-vertex digon-free planar digraph has a set
of at least 3n/5 vertices that induces an acyclic subdigraph.

Conjecture 5, if true, is best possible, as shown in [4].
As for graphs, one can also color digraphs with acyclic sets. We say that a digraph D is

k-colorable if V (D) can be colored with at most k colors such that each color class induces an
acyclic subdigraph. The minimum k for which such a coloring exists is called the dichromatic
number of D, and is denoted by χ(D). This definition was introduced by Neumann-Lara
[9], and later, independently, by Mohar [8] when studying circular colorings.

Conjecture 6 (Neumann-Lara ’85 [10]) For every digon-free planar digraph D, χ(D) ≤
2.

Conjecture 6 seems very difficult and is widely open. The only non-trivial result known
to us is the following theorem.

Theorem 7 (Harutyunyan, Mohar ’12 [6]) Every planar digraph D of digirth five has
χ(D) ≤ 2.
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Extended Abstract

We will denote by D a finite digraph without loops or multiple arcs in the same direction,
with vertex set V (D) and arc set A(D). We will denote by d+(v) the out-degree of a vertex
v. A sink will be a vertex v ∈ V (D) such that d+(v) = 0. An arc (u, v) ∈ A(D) is a
symmetric arc of D if (v, u) ∈ A(D). The circumference of a digraph D is the length of a
longest cycle in D, or infinity if there are no cycles in D.

A biorientation of a graph G is a digraph obtained from G by replacing each edge
xy ∈ E(G) by either the arc (x, y) or the arc (y, x) or the pair of symmetric arcs (x, y), (y, x).
An orientation of G is a biorientation without symmetric arcs. A semicomplete multipartite
digraph is a biorientation of a complete m-partite graph for some m ≥ 2; a multipartite
tournament is an orientation of a complete m-partite graph for some m ≥ 2.

A digraph D is cyclically m-partite if there is a homomorphism of D to the directed cycle
on m vertices, or equivalently, if there exists a partition (V0, . . . , Vm−1) of the vertices of D
such that for every arc (u, v) ∈ A(D), we have u ∈ Vi if and only if v ∈ Vi+1 (mod m). It is
easy to see that the length of any cycle in a cyclically m-partite digraph is divisible by m.

A digraph is t-quasi-transitive if (u0, ut) ∈ A(D) or (ut, u0) ∈ A(D) whenever (u0, . . . , ut)
is a path in D. Thus 2-quasi-transitive digraphs are just quasi-transitive digraphs.

A subset N of V (D) is k-independent if for every pair of vertices u, v ∈ N , we have
d(u, v), d(v, u) ≥ k; it is l-absorbent if for every u ∈ V (D)−N there exists v ∈ N such that
d(u, v) ≤ l. A k-kernel of D is a k-independent and (k − 1)-absorbent subset of V (D). A
2-kernel is called a kernel.

In [1] Chvátal proved that recognizing digraphs that have a kernel is an NP-complete
problem; later, Fraenkel proved in [2] that this so-called kernel problem remains NP-complete
even when restricted to planar digraphs with d+ ≤ 2, d− ≤ 2, and d ≤ 3. We propose to
investigate the complexity of the analogous k-kernel problem, i.e., the problem of recognizing
digraphs that have a k-kernel. Although there are many known sufficient conditions for the
existence of k-kernels in digraphs [3, 4], very little is known about the complexity of the
k-kernel problem for k ≥ 3.

A classical result in kernel theory states that every bipartite digraph has a kernel [5].
Since bipartite digraphs are cyclically 2-partite digraphs, it is natural to ask if every cyclically
k-partite digraph has a k-kernel. The answer is no. In [6] a simple example of a cyclically
3-partite digraph without a 3-kernel is given. So, the next natural question is to ask for the
complexity of the k-kernel problem restricted to the class of cyclically k-partite digraphs.
As we have already observed, for k = 2 a cyclically 2-partite digraph is simply a bipartite
digraph, which always has a kernel [5]. Hence, the 2-kernel problem can be decided in
constant time for the family of cyclically 2-partite digraphs. We focus on the complexity of
the 3-kernel problem, and its restriction to three natural families of digraphs.

Our main result on cyclically 3-partite digraphs is the following theorem.

Theorem 1 The 3-kernel problem for the class of cyclically 3-partite digraphs is NP-complete,
even when restricted to cyclically 3-partite digraphs of circumference 6.

As a byproduct of the proof of Theorem 1, we derive the following fact about the kernel
problem.

Corollary 2 The kernel problem restricted to the class of 3-colorable digraphs is NP-complete.
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Also, we observe that, with very simple additional conditions, the 3-kernel problem
restricted to the family of cyclically 3-partite digraphs can be decided in constant time. We
will denote by Z the family of cyclically 3-partite digraphs that admit a cyclic 3-partition
D = (V0, V1, V2) in which at least one Vi, for i ∈ {0, 1, 2}, has no sink.

Theorem 3 Let D be a digraph, each of the following conditions is sufficient for D to have
a 3-kernel.

1. Every directed cycle of D has length exactly 3.

2. D is a cyclically 3-partite digraph and belongs to Z.

We can observe that the first condition of Theorem 3 is not restricted to cyclically 3-
partite digraphs. Nonetheless, in the case of cyclically 3-partite digraphs, it follows that the
circumference constraint in Theorem 1 cannot be improved.

Depending on the available time, we will also discuss the following results.

Theorem 4 Let D be a semicomplete multipartite digraph. Then D has a 3-kernel if and
only if there is a vertex v ∈ V (D) such that {v} is a 2-absorbing set of D− (X \ {v}), where
X is the part of D containing v. As a consequence to this fact, it is obtained that the 3-
kernel problem can be decided in polynomial time when restricted to the class of semicomplete
multipartite digraphs. Also, if a semicomplete multipartite digraph has a 3-kernel, it can be
found in polynomial time.

A restriction to semicomplete bipartite digraphs leads to improved results.

Theorem 5 Let D = (X,Y ) be a semicomplete bipartite digraph. A 3-kernel of D consists
either of all the sinks of D, or of a vertex v ∈ X such that Y → v, or of a vertex v ∈ Y
such that X → v. As a consequence to this fact, it can be determined in linear time whether
a semicomplete bipartite digraph has a 3-kernel. Also, if a 3-kernel exists, it can be found
in linear time.

Finally, we prove what seems to be the first two cases of a more general result in k-quasi-
transitive digraphs.

Theorem 6 Let 2 ≤ k ≤ 3 be an integer. The k-kernel problem restricted to the class of
k-quasi-transitive digraphs can be decided in polynomial time. Also, if a k-kernel exists, it
can be constructed in polynomial time.

Further problems and directions will be also discussed.
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Extended Abstract

The Chromatic number problem for P5-free graphs is known to be NP-hard [6]. How-
ever for fixed k, the k-colorability question for P5-free graphs can be answered in polynomial
time [4, 5]. More generally, the k-colorability question for Pt free graphs has been well stud-
ied [10, 9, 7, 1, 4, 5, 8], with the cases when t < 5 being relatively trivial. The following
table highlights the current state of the research for connected graphs.

k\t 3 4 5 6 7 8 9 10 11 . . .

3 O(m) O(m) O(m) O(mn
α) ? ? ? ? ? . . .

4 O(m) O(m) P ? ? ? NPc NPc NPc . . .
5 O(m) O(m) P ? ? NPc NPc NPc NPc . . .
6 O(m) O(m) P ? NPc NPc NPc NPc NPc . . .
7 O(m) O(m) P ? NPc NPc NPc NPc NPc . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The polynomial time algorithms for answering the k-colorability question for P5-free
graphs will return a valid k-coloring if one exists, but otherwise does not provide a no-
certificate – or a minimal obstruction that makes the graph non k-colorable. This motivates
the study of k-critical P5-free graphs. We define a graph G, with chromatic number k, to
be k-critical with respect to a graph class C if every proper subgraph of G belonging to C is
k − 1 colorable. It has been shown that when C is the class of P5-free graphs, exactly 6 are
4-critical as illustrated below [2].

These graphs have been subsequently used to answer the 3-colorability question for P5-
free graphs in linear time [8]. We conjecture that the following construction produces an
infinite set of 5-critical graphs with respect to the class of P5-free graphs.

Regular construction: Consider 4(j+2)+1 vertices on a circle for j ≥ 1. Each vertex
is adjacent to its 3 closest neighbours on each side. Then non-adjacent to the next 2, then
adjacent to the next 2, then non-adjacent to the next 2, then adjacent to the next 2, and so
on.

As an example, the following graphic illustrates the regular neighbourhood structure for
j = 2, 3, 4.

17 vertices 21 vertices 25 vertices
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It is not difficult to show that the graphs produced by this construction are 2K2-free
(and hence P5-free) and that their chromatic number is 5. However, proving the graphs are
5-critical (w.r.t. the class of P5-free graphs) is currently a work in progress.

It is interesting to note that for j > 4, the constructed graphs will contain a C5 by
considering vertices at relative positions [-10, -5, 0, 5, 10] on the cycle. When C is the class
of (P5, C5)-free graphs it is obvious that K5 will be 5-critical. Thus, by the Strong Perfect
Graph Theorem [3], all other 5-critical graphs must contain a C7 as an induced subgraph.
Using this as a starting point we found via computer search an additional 7 graphs that
were 5-critical, as illustrated below.

n=11n=10

n=5

n=9n=8

n=13 n=17 n=21

Using non-trivial strategies, our algorithm terminates, which demonstrates that these
are the only 8 graphs that are 5-critical with respect to the class of (P5, C5)-free graphs.
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Extended Abstract

In this note the graphs we consider are finite, without multiple edges and without loops. A
proper edge-colouring of a graph G = (V,E) is an assignment of colours to the edges of the
graph such that two adjacent edges do not use the same colour. A strong edge-colouring
(called also distance 2 edge-colouring) of a graph G is a proper edge-colouring of G, such that
every edge of a path of length 3 uvxy uses a different colour (c(uv) 6= c(vx), c(vx) 6= c(xy)
and c(uv) 6= c(xy)). We denote by χ′

s(G) the strong chromatic index of G which is the
smallest integer k such that G can be strong edge-coloured with k colours.

The notion of strong edge-colouring was introduced by Fouquet and Jolivet in 1983
[4, 5]. Strong edge-colouring can be used to model the conflict-free channel assignment in
radio networks [2, 7, 8, 9, 10, 11].

Let ∆ denote the maximum degree of a graph. In 1985, during a seminar in Prague,
Erdős and Nešetřil gave a construction of graphs having strong chromatic index equal to
5
4∆

2 when ∆ is even and 1
4 (5∆

2− 2∆+1) when ∆ is odd. They conjectured that the strong
chromatic index is bounded by these values and it was verified for ∆ ≤ 3 [1, 6]. In [3]
Faudree et al. proved that χ′

s(G) ≤ 4∆+ 4 for planar graphs with maximum degree ∆ ≥ 3.
Moreover they conjectured:

Conjecture 1 (Faudree et al. [3]) If G is a planar subcubic graph, then χ′
s(G) ≤ 9.

If the conjecture is true, then the upper bound is best possible (since the prism P has
χ′
s(P ) = 9).

Let mad(G) be the maximum average degree of the graph G i.e.

mad(G) = max

{

2|E(H)|
|V (H)| , H ⊆ G

}

where V (H) and E(H) denote the sets of vertices and edges of H , respectively.
In this talk we study the bounds of the strong chromatic index of subcubic graphs

considering their maximum average degree and we prove the following results:

Theorem 2 Let G be a subcubic graph:

1. If mad(G) < 15
7 , then χ′

s(G) ≤ 6.

2. If mad(G) < 27
11 , then χ′

s(G) ≤ 7.

3. If mad(G) < 13
5 , then χ′

s(G) ≤ 8.

4. If mad(G) < 36
13 , then χ′

s(G) ≤ 9.

For cases 1, 2 and 4, the given upper bounds on the maximum average degree are sharp:
there exist graphs with mad(G) = 7

3 (resp. 5
2 , 20

7 ) which are not strong edge-colourable with
6 (resp. 7, 9) colours.

For planar graphs it follows (we recall that the girth of a graph is the size of a shortest
cycle in this graph):

Corollary 3 Let G be a planar subcubic graph with girth g:

1. If g ≥ 14, then χ′
s(G) ≤ 6.

2. If g ≥ 10, then χ′
s(G) ≤ 7.
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3. If g ≥ 8, then χ′
s(G) ≤ 8.

4. If g ≥ 7, then χ′
s(G) ≤ 9.

In this talk we are also interested in finding a bound for the strong chromatic index of
planar subcubic graphs. We improve the fourth part of Corollary 3 and give a partial answer
to Conjecture 1, by showing the following:

Theorem 4 Let G be a planar subcubic graph containing neither induced 4-cycles, nor in-
duced 5-cycles. Then χ′

s(G) ≤ 9.
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Structures in Cubic Graphs
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Extended Abstract

We present essentially two results where the second one is joint work with J.Hägglund. Both
results disprove several conjectures which are related to the circuit double cover conjecture;
see [2, 3, 4, 5].

Firstly, we show that a set S of 2-connected graphs must satisfy several conditions if the
following holds for S:

Every 3-connected cubic graph G has a matching M such that every component L of G−M
is a subdivision of an element of S and L has an even number of vertices of degree 2.

(For our purpose, it suffices to assume that S has only cubic graphs and even circuits as ele-
ments.) For instance, we prove that S must contain a cubic graph which is not hamiltonian.
This approach generalizes the concept of component factors in cubic graphs.

Secondly, we present the only known construction of an infinite family of cyclically 5-edge
connected permutation snarks; i.e. snarks which have a 2-factor consisting of two chordless
circuits. Note that the Petersen graph has been claimed for a long time to be the only
cyclically 5-edge connected permutation snark which has recently been disproved in [1].
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Minimum number of palettes in edge colorings
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Extended Abstract

Let G be a finite simple graph, let C be a set of colors and let f : E(G) → C be an
edge-coloring of G. We shall always assume that f is proper, i.e., any two adjacent edges
get distinct colors. The palette of a vertex v ∈ V (G) with respect to f is the set Sf (v) of
colors of edges incident to v.

Two vertices of G are distinguished by a coloring f if their palettes are distinct, i.e.,
Sf (u) 6= Sf (v). There are many papers dealing with distinguishing either all or only neigh-
boring vertices in a graph. In this talk we are interested in minimizing the number of
distinguished vertices, i.e., in the minimum number of palettes taken over all possible proper
(edge-) colorings of a graph. For a given graph G, we denote this number by š(G) and call
the palette index of G.

The minimum number of colors required in a proper coloring of a graph G is called
the chromatic index of G and is denoted by χ′(G). Recall that, by Vizing’s theorem, the
chromatic index of G equals either ∆(G) or ∆(G)+ 1. A graph with χ′(G) = ∆(G) is called
class 1, while a graph with χ′(G) = ∆(G)+1 is called class 2. Our first result on the palette
index is (almost) obvious.

Proposition 1 The palette index of a graph G is 1 if and only if G is regular and class 1.

A proper coloring of G using χ′(G) colors is called minimum. In general, however,
minimum colorings do not provide the minimum number of palettes. For instance, let us
consider the case of complete graphs.

Since the graphs K1 and K2k are class 1, we have š(K1) = š(K2k) = 1. On the other
hand, it is easy to see that the minimum coloring of Kn for odd n induces n distinct palettes.
Indeed, each palette has n − 1 colors. That means that at each vertex exactly one color is
missing. Further, since n is odd, each color misses at least one vertex. Consequently, each
color misses exactly one vertex and missing colors are distinct for distinct vertices.

However, by increasing the number of colors we can reach the number of palettes 3 or 4.
The aim of the talk is to determine palette indices of complete graphs:

Theorem 2

š(Kn) =







1, if n ≡ 0 (mod 2) or n = 1
3, if n ≡ 3 (mod 4)
4, if n ≡ 1 (mod 4)
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Extended Abstract

Graphs are frequently employed to model natural or artificial systems. A good example
is protein-protein interaction networks (PPIs) in biology. Proteins contain domains that
determine their function. Information on the domain content of proteins, which can be
seen as a relation R ⊆ D × P between domains and proteins which contain them is readily
available from biological databases. Candidates for interaction between domains can be
derived from knowledge on the interacting proteins, i.e., a graph G with vertex set P , and
the relation R: If (p, p′) ∈ P , (d, p) ∈ R, and (d′, p′) ∈ R, then the domains (d, d′) are
putative interaction partner.

More abstractly, let G = (VG, EG) be a graph, B a finite set, and R ⊆ V × B a binary
relation, so that, for every element b ∈ B, we can find an element v ∈ VG such that (v, b) ∈ R.
Then the graph G ∗R has vertex set B and edge set

EG∗R = {(u, v) ∈ B ×B| there is (x, y) ∈ EG and (x, u), (y, v) ∈ R} .

If there exists an R satisfying the equation G ∗R = H , we say there is a relation from G to
H . Note that graphs G and H can be seen as conjugate, i.e., G = R+ ◦H ◦R.

This concept has a close relation with a well studied graph theory concept: graph homo-
morphism. For given graphs G = (VG, EG) and H = (VH , EH) a homomorphism f : G → H
is a mapping f : VG → VH such that (u, v) ∈ EG implies (f(u), f(v)) ∈ EH . It naturally
defines a mapping f1 : EG → EH by setting f1((x, y)) = (f(x), f(y)) for all (x, y) ∈ EG. If
both f and f1 are surjective, we call f a surjective homomorphism. Note that all surjective
homomorphisms f : G → H are (modulo representation) also relations G ∗ R = H where
R = {(u, f(u), x ∈ VG)}.

Obviously, relations that are not functional are not homomorphisms, but corresponds to
the multihomorphisms. A relation with full domain thus can be regarded as a surjective
multihomomorphism, a multihomomorphism such that pre-image of every vertex in H is
non-empty and for every edge (u, v) in H we can find an edge (x, y) in G satisfying u ∈ f(x),
v ∈ f(y).

Graph relations compose, i.e., (G∗R)∗S = G∗ (R◦S). We also show that every relation
R can be decomposed, in a standard way, to a relation RD duplicating vertices and a relation
RC contracting vertices. In diagram form, this is expressed as:

relation R
G H

G′

surjective homomorphism RCfull homomorphism R
+

D

This further develops the connection in between relations and homomorphisms. For
example, the computational complexity of deciding the existence of a relation from G to
a given H lies in between the complexity of the corresponding problems of existence of
homomorphism and surjective homomorphism.

Let ≤Tur
P indicate polynomial time Turing reduction.

Theorem 1 For finite H our relation problem sits in the following relationship:

Hom(H) ≤Tur

P
Ful-Rel(H) ≤Tur

P
Sur-Hom(H) . (2)
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Here Ful-Rel(H) is full relation problem i.e., for a fixed graph H , take as input some
finite G and ask whether there is a relation with full domain from G. Hom(H) denoted
as homomorphism problem which takes as input some finite G and asks whether there is a
homomorphism from G to H . The surjective homomorphism problem Sur-Hom(H) takes
as input some finite G and asks whether there is a surjective homomorphism from G to H .

There are three different ways how to define a notion similar to graph cores for relations
between graphs.

Cores of graph are minimal representatives in the corresponding equivalence class of
homomorphism equivalence. We consider cores of relational equivalence classes. Two graphs
G and H are relationally equivalent, G ∽ H , if there are relations R and S such that
G ∗ R = H and H ∗ S = G. If we require relations R and S to be full, we denote the
equivalency as G ∽f H . A graph is an R-core if it is the smallest graph (in the number of
vertices) in its equivalence class under ∽f . We show that if G is an R-core, then every relation
R such that G∗R = G satisfies the Hall condition and thus contains a monomorphism. And
R-core is unique up to isomorphism. An R-core of a graph G, GR-core, is the smallest graph
in the same equivalence class of G. We prove that GR-core is isomorphic to an induced
subgraph of G.

Proposition 2 GR-core can be characterized by an algorithm, which removes all vertices
v ∈ G such that

(1) the neighborhood of v is union of neighborhood of some other vertices and
(2) there is vertex u, u 6= v, such that NG(v) ⊆ NG(u).

Because every subgraph has a homomorphism to the original graph, cores of graph (in
the sense of homomorphism) are defined as the the minimal graphs which do not have
homomorphism to its subgraph. Similarly, we consider the relation from a graph to its
subgraph. Let H be a subgraph of G, an R-retraction of G to H is a relation R such that
G∗R = H and (x, x) ∈ R for all x ∈ VH . A graph is R-reduced if there is no R-retraction to a
proper subgraph. We show that the R-reduced graph of a graph is unique up to isomorphism.
Thus, we can also speak about “the R-reduced graph of a graph G” as the smallest subgraph
on which it can be retracted. We also show that

Proposition 3 a graph is R-reduced if and only if it is a graph core.

Finally, we introduce another notion related to a graph core that is meaningful only for
graph relations. An R-coretraction of subgraph H to G is a relation R such that H ∗R = G
and (x, x) ∈ R for all x ∈ VH . A graph G is an R-cocore if there is no proper subgraph of G
that is an R-coretract of G. We show the following proposition and consequently R-cocores
are unique up to isomorphism and can be computed in polynomial time. We also show that
the R-cocore is the core of equivalence class under ∽.

Proposition 4 G is an R-cocore if and only if any vertex neighborhood is not the union of
other vertex neighborhoods.

For the simplest case G = H , a characterization of solutions of the equation G ∗ R = G
is given. A relation R is an automorphism of G if it is of the form R = {(x, f(x))|x ∈ VG}
and f : VG → VG is an automorphism of G. We show that:

Theorem 5 All solutions of G ∗ R = G are automorphisms if and only if G has property
that the neighborhoods of vertices do not contain each other.
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Symmetry breaking in graphs
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Extended Abstract

This talk is concerned with automorphism and endomorphism breaking of finite and infinite
graphs.

Albertson and Collins [1] introduced the distinguishing number D(G) of a graph G as
the least cardinal d such that G has a labeling with d labels that is only preserved by the
trivial automorphism.

This concept has spawned a wealth of papers, mostly on finite, but also on infinite graphs.
We are interested in the infinite motion conjecture of Tom Tucker. In particular, we present
partial results pertaining to the conjecture, a generalization to uncountable graphs, and
results that support the conjecture.

Moreover, we extend this concept to endomorphisms and introduce the endomorphism
distinguishing number De(G) of a graph G as the least cardinal d such that G has a vertex
labeling with d labels that is only preserved by the trivial endomorphism.

As the number of endomorphisms usually vastly exceeds the number of automorphisms,
the new concept opens challenging problems, several of which will be presented. More-
over, we extend results about the distinguishing number of finite and infinite graphs to the
endomorphisms distinguishing number. The starting point is the

Lemma 1 ( Motion Lemma, Russell and Sundaram [5]) Let the motion m(G) of a
graph G be the minimum number of vertices that is moved by any nonidentity automorphism
of G. Then

2
m(G)

2 ≥ |Aut(G)|
implies D(G) ≤ 2.

The immediate generalization to infinite graphs is the Motion Conjecture, with Tucker’s
Infinite Motion Conjecture as a special case:

Conjecture 2 ( Motion Conjecture [2]) Let G be a connected, infinite graph with infi-
nite motion m(G). Then 2m(G) ≥ |Aut(G)| implies D(G) ≤ 2.

Conjecture 3 (Tucker’s Infinite Motion Conjecture [6]) Let G be a connected, lo-
cally finite infinite graph with infinite motion m(G). Then D(G) ≤ 2.

Both conjectures are open, but partial results and connections to other structures will
be presented in the talk. We list two of them below. The first one is by Florian Lehner.

Theorem 4 The Infinite Motion Conjecture is true for graphs of growth

O
(

2(1−ǫ)
√

n

2

)

Another one is from Cuno, Imrich and Lehner [2].

Theorem 5 Let G be an infinite, connected graph with infinite motion. If m(G) ≥ |Aut(G)|,
then D(G) ≤ 2.

For countable G this is easily shown by induction, for graphs G with larger cardinality
by transfinite induction. We have the following corollary.
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Corollary 6 Let G be an uncountably infinite, connected graph with infinite motion, and
suppose that 2m(G) > |Aut(G)|. Then, under the assumption of the general continuum
hypothesis, D(G) ≤ 2.

For the analogous result for countably infinite, connected graphs one assumes the CH.
However, if the graphs are locally finite, then the CH is not needed. This was shown by
Simon Mark Smith (see [4]) and follows from results of either Halin, Trofimov or Evans.

For the endomorphism distinguishing number we have analogues to most of the above,
see Imrich et al. [3]. Let us just state the analogues to the Motion Conjecture, Theorem 5,
and Corollary 6.

Conjecture 7 (Endomorphism Motion Conjecture [3]) Let the endomorphism motion
me(G) of a graph G be the minimum number of vertices that is moved by any nonidentity
endomorphism of G, and let G be a connected, infinite graph with infinite me(G). Then
2me(G) ≥ |End(G)| implies De(G) ≤ 2.

Theorem 8 Let G be a connected infinite graph with infinite endomorphism motion. If
me(G) ≥ |End(G)|, then De(G) ≤ 2.

Corollary 9 Let G be a connected, uncountable infinite graph with infinite endomorphism
motion, and suppose that 2me(G) > |End(G)|. Then, under the assumption of the general
continuum hypothesis, De(G) ≤ 2.

Just as the Motion Conjecture and Tucker’s Infinite Motion Conjecture, Conjecture 7
is still open. However, there are many classes of graphs that support these conjectures.
For example, countable infinite trees T without leaves have infinite endomorphism motion
me(T ), uncountably many endomorphisms, and

2me(T ) ≥ |End(T )|.

In accordance with Conjecture 7 they have endomorphism distinguishing numbers ≤ 2, see
[3].

Notice that the extension of this result to uncountable trees is still open, just as, for
example, the endomorphism distinguishing numbers of of hypercubes (of dimension > 3)
have not yet been determined.
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Cyclic words and vertex colourings of plane graphs
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Extended Abstract

Let A = {a, b, c, . . .} be a finite alphabet, whose element are called letters (digits, colours,
symbols, . . . ).

The word of length n over A is an expression w = a1a2 . . . an, where ai ∈ A for all i =
1, 2, . . . , n. Subword w̄ of the word w is an expression w̄ = aiai+1 . . . aj with 1 ≤ i ≤ j ≤ n.

The cyclic word of length n is an expression w = a1a2 . . . an, n ≥ 2 (Consider the cyclic
word as a sequence of consecutive labells on the vertices of a cycle of length). A subword of
a cyclic word is its arbitrary part.

Let us recall some properties that words can have. A word is proper if it no two consec-
utive letters are the same. For example the word "abcba" is proper but the word "abbcd" is
not proper.

The word a1a2 . . . an, n ≥ 1, is simple if ai 6= aj for i 6= j.
The word of the form a1a2 . . . a2k with property that ai = ai+k for all i = 1, 2, . . . , k is

called the repetition. A word is called nonrepetitive is none of its subwords is a repetition.

Examples: The word "abcabc" is a repetition, the word "abcacbd" is nonrepetitive, while
the word "abcbcdea" is not nonrepetitive because it contains a subword "bcbc", which is a
repetition.

A palindrom is any word which can be read in the same way from the front and from the
back. The word is palindromfree if no its subword is a palindrom

Examples: The words "abcddcba" and "abcdcba" are palindroms while the word abcdbda is
palindrom free.

A word is a weak parity one if at least one letter in it appears there an odd number of
times. A word is a strong parity one if each used letter in it is used there an odd numbers
of times. For example the word "abcabde" is a weak parity word. The word "abcabdadbd"
is a strong parity word.

Consider a 2-connected plane graphs. All its faces are bounded by cycles, called the
facial cycles. If we label all vertices of a 2-connected plane graph G with letters from an
alphabet A, then any face α = [v1, v2, . . . , vk] determined by the vertices v1, v2, . . . , vk can
be associated with a cyclic word a1a2 . . . ak, where k is size (degree) of the face α and ai is
a labell of the vertex vi. The word a1a2 . . . ak is called the facial word of the face α of G.

In our talk we will consider the following problem:

Problem: What is the minimum number of letters in an alphabet A that allows to label
the vertices of a given 2-connected plane graph G in such a way that all the facial words of
G over A have a given property P ?

We will give a survey on results and open questions concerning this problem for several
properties of words.
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Extended Abstract

Let G = (V,E) be a graph. A set D ⊆ V is a dominating set if every vertex v ∈ V −D
has a neighbour in D. The cardinality of a minimum dominating set in a graph G is denoted
by γ(G). Many variants of dominating sets were investigated e.g. connected dominating
sets, total dominating sets, k-dominating sets. Recall that a set TD is a total dominating
set if every vertex is adjacent to a vertex in TD. Let γt(G) denote the total domination
number, i.e., minimum cardinality of a total dominating set in a graph G.

Another interesting type of dominating sets are global secure sets. We say that a set
SD ⊆ V is a global secure set if N [SD] = V and |N(X) ∩ SD| ≥ |N [X ] − SD| for any
X ⊆ SD [2]. A global security number, denoted by γs(G), is the cardinality of a minimum
global secure set of a graph G.

From the definition of global secure sets it follows that γs(G) ≥ ⌈|V |/2⌉ for any graph G.
On the other hand it was proven that if a minimum vertex degree in a graph G is greater
or equal to 3, then γt(G) ≤ |V |/2 [1]. Moreover, Henning et al. [4] characterized graphs
which achieve the equality in the above bound. It turns out that all these graphs are cubic.
Moreover, they achieve the equality in the lower bound on global security number. For
claw-free cubic graphs of order n ≥ 10 it was shown that γt(G) ≤ 4n/9 [8]. If n < 10, then
there are exactly two claw-free cubic graphs with total domination number one-half their
order: K4 and a graph presented in Fig.1. For these two graphs also the global security
number equals one-half their order.

Figure 13: The graph with total domination number one-half its order.

Global secure sets were investigated for grid-like graphs [3], cactus trees [5] and cographs
[6, 7]. Now we present new results concerning minimum global secure sets in claw-free cubic
graphs.

The first author was supported by the National Science Centre (decision No DEC-2011/01/N/ST6/00922).
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Extended Abstract

Identifying codes in graphs have been studied for more than a decade (see [2]). In the class
of line graphs these codes were studied in [1]. There the problem is equivalent to locating
an arbitrary edge with the aid of a suitable subset of edges (like a perfect matching). Often
in identification we are also interested in locating more than one object. In this paper,
we concentrate on this, i.e., finding optimal structures to locate sets of edges. Let us now
introduce the problem in details together with some notation.

We assume that G = (V,E) is a finite simple graph, which is also connected and undi-
rected. The girth of G is denoted by g = g(G) and the minimum degree by δ = δ(G). Let
e ∈ E be an edge. We use the notation N [e] for the set of edges adjacent to e (including
also e). Similarly, for a set of edges S ⊆ E, we write:

N [S] =
⋃

e∈S

N [e].

A nonempty subset of E is called a code in G and its elements are called code-edges. Let
C ⊆ E be a code and e an edge in E. An identifying set of the edge e with respect to C is
defined via I[e] = N [e]∩C. For a subset S ⊆ E we use analogous notation I[S] = N [S]∩C.

Definition 1 Let ℓ be a positive integer. A code C ⊆ E is called ℓ-edge-identifying if

I[S1] 6= I[S2]

for all distinct subsets S1 and S2 of E with cardinalities of at most ℓ.

This gives the concept of edge-identifying codes defined in [1] when ℓ = 1. The smallest
cardinality of an ℓ-edge-identifying code in G is denoted by γEID

ℓ (G) and a code attaining
this cardinality is called optimal.

Classification

Next we classify all those graphs which admit 2-edge-identifying codes and show that
there does not exist non-trivial graphs which admit an ℓ-identifying code for ℓ ≥ 3 (actually,
we show a stronger result related to claw-free graphs). Let us introduce two properties,
which we will use in the sequel:

(P5) If C5 is a 5-cycle in G, then there exists at most one vertex in C5 of degree 2 (that is,
all the other vertices are incident with at least one edge of E not belonging to C5),

(P6) If C6 is a 6-cycle in G, then there exist two vertices in C6, say u and v, of degree at
least three such that d(u, v) ≤ 2 in C6.

Theorem 2 (i) A graph on at least three vertices admits a 2-edge-identifying code if and
only if δ ≥ 2, g ≥ 5, any 5-cycle has the property P5 and any 6-cycle has the property P6.
(The only graph on two vertices admitting 2-edge-identifying code is the complete graph K2).

(ii) Let ℓ ≥ 3. Apart from G = K2, there do not exist any connected graphs admitting
an ℓ-edge-identifying code.

Lower bounds, constructions and algorithms

We begin by giving a useful bound in terms of the order of a graph.
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Theorem 3 For a graph G = (V,E) (other than K2), we have γEID
2 (G) ≥ |V |.

We say that a subgraph H of G is a k-factor if H contains all the vertices of G and all
the vertices of H are of degree k. The k-factors of graphs have been widely studied and for
the known results we refer to the survey [3]. The previous lower bound is sharp for infinitely
many graphs as is shown in the following theorem.

Theorem 4 Let G = (V,E) be graph.

(i) If G has 2-factor and g(G) ≥ 7, then the edges of any 2-factor form an optimal 2-edge-
identifying code in G with cardinality |V |.

(ii) If G is Hamiltonian, |V | ≥ 7 and g(G) ≥ 6, then the edges of any Hamilton cycle form
an optimal 2-edge-identifying code in G with cardinality |V |.

(iii) If G has a 3-factor and admits a 2-edge-identifying code, then the edges of any 3-factor
form a 2-edge-identifying code with cardinality 3|V |/2.

However, not all graphs have 2-edge-identifying code of size |V |. For example, the optimal
2-edge-identifying code of the Petersen graph (with 10 vertices) has cardinality 12.

We provide an algorithm for graphs with girth at least six showing that the size of the
optimal 2-edge-identifying code is bounded above by two times the number of vertices.

Theorem 5 If G = (V,E) is a graph with g(G) ≥ 6 admitting a 2-edge-identifying code,
then we have γEID

2 (G) ≤ 2|V |.

Moreover, we can construct an infinite family of graphs Gi = (Vi, Ei) (with g(Gi) = 6, ∀ i =
1, 2, . . . ) such that the cardinality of an optimal 2-edge-identifying code in Gi approaches
2|Vi| as i tends to infinity.

The next theorem gives a bound in terms of the size of a graph.

Theorem 6 If C is a 2-edge-identifying code in a graph G consisting of k edges, then we
have |E| ≤ k

3
2 . On the other hand, there exists an infinite family of graphs Gν = (Vν , Eν)

such that they admit a 2-edge-identifying code of cardinality kν with |Eν | = Θ(k
3
2
ν ).

We have the following counter-intuitive result stating that increasing the number of edges,
i.e., the number of identified objects, in a graph with girth at least six does not increase the
number of edges needed in the optimal 2-edge-identifying code.

Theorem 7 Let G = (V,E) be a graph admitting a 2-edge-identifying code such that the
girth of G is at least six and G 6= K2. Assume that G′ is a graph obtained from G by
adding such an edge e that the girth of graph G′ remains at least six. Then G′ admits a
2-edge-identifying code and we have

γEID
2 (G) − 3 ≤ γEID

2 (G′) ≤ γEID
2 (G).

Moreover, there exist graphs attaining these bounds.
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Almost all fullerene graphs are almost Hamiltonian
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LaBRI, University of Bordeaux, France

Extended Abstract

Fullerene graphs, i.e. cubic planar 3-connected graphs with pentagonal and hexagonal
faces, are conjectured to be Hamiltonian. This is a special case of a conjecture of Barnette.
We show that if the pentagonal faces of a fullerene graph G are far enough from each other,
then G contains a Hamiltonian cycle.
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Extended Abstract

If c : V ∪ E → {1, 2, . . . , k} is a proper total coloring of a graph G = (V,E) then the
palette S[v] of a vertex v ∈ V is the set of colors of the incident edges and the color of v:
S[v] = {c(e) : e = vw ∈ E} ∪ {c(v)}. A total coloring c distinguishes vertices u and v if
S[u] 6= S[v]. A d-strong total coloring of G is a proper total coloring that distinguishes all
pairs of vertices u and v with distance 1 ≤ d(u, v) ≤ d. The minimum number of colors of a
d-strong total coloring is called d-strong total chromatic number χ′′

d(G) of G. Such colorings
generalize strong total colorings and adjacent strong total colorings as well.

The d-strong total chromatic number is monotonous with respect to the distance and
additive but not hereditary (for example, χ′′

2 (C5) = 5 but χ′′
2(C5 + e) = 4).

Let ni denote the maximum number of vertices of degree i that are of pairwise distance
at most d and let µ′′

d(G) = max{min{j :
(

j
i+1

)

≥ ni} : δ(G) ≤ i ≤ ∆(G)}. Obviously, µ′′
d(G)

is a lower bound for χ′′
d(G).

Zhang et al. [2] conjectured that the d-strong total chromatic number attains one of two
possible values if d ≥ 2.

Conjecture 1 χ′′
d(G) ≤ µ′′

d(G) + 1 for all graphs G and d ≥ 2.

We prove that this conjecture is not true in general. Moreover, we show that the difference
between the d-strong total chromatic number χ′′

d(Cn) of a cycle Cn and the lower bound
µ′′
d(Cn) may be arbitrarily large.

Theorem 2 Let k and s be positive integers such that k > 7s + 2. If d =
(

k
3

)

− 1 and
n = 3

(

k
3

)

− 1 then µ′′
d(Cn) = k and χ′′

d(Cn) ≥ k + s.

Moreover, we determine some general bounds for χ′′
d(G), determine χ′′

d(Pn) completely
for paths Pn, give some exact values for the d-strong total chromatic number of cycles (up
to d = 16), and present results for circulant graphs.
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Extended Abstract

We denote the class of all finite simple graphs by I (see [1]). A graph property P is any
non-empty isomorphism-closed subclass of I. A property P of graphs is called hereditary if
it is closed under taking subgraphs, i. e., G ∈ P and H ⊆ G implies H ∈ P . A property P is
called additive if it is closed under disjoint union of graphs, i. e., G ∈ P and H ∈ P implies
G ∪H ∈ P .

Some well-known hereditary and additive graph properties are (see [1]): O = {G ∈
I : E(G) = ∅}, Ok = {G ∈ I : each component of G has at most k + 1 vertices} and
Dk = {G ∈ I : δ(H) ≤ k for each H ⊆ G}, where δ(H) is the minimum degree of H .

Let r, s ∈ N, r ≥ s, and P and Q be two additive and hereditary graph properties. A
(P ,Q)-total independent set T = VT ∪ET ⊆ V ∪E of a graph G is the union of a set VT of
vertices and a set ET of edges of G such that for the graphs induced by the sets VT and ET

it holds that G[VT ] ∈ P , G[ET ] ∈ Q, and G[VT ] and G[ET ] are disjoint. Let TP,Q be the set
of all (P ,Q)-total independent sets of G.

An (r, s)-fractional (P ,Q)-total coloring of a graph G = (V,E) is a coloring of all x ∈
V ∪E by s-elements subsets C(x) ⊆ {1, . . . , r} such that for each color i, 1 ≤ i ≤ r, the set
Ti := {x ∈ V ∪E : i ∈ C(x)} belongs to TP,Q. The fractional (P ,Q)-total chromatic number
χ′′
f,P,Q(G) of G is defined as the infimum of all ratios r/s such that G has an (r, s)-fractional

(P ,Q)-total coloring.

7,8,10 1,2,6 5,8,9

6,7,9 5,6,10

1,4,5 2,3,7

2,4,10

1,3,9

3,4,8

a (10,3)-fractional (D1,D1)-total coloring of K4

Now, let L(x) be a set of admissible colors for every element x ∈ V ∪ E. The graph G
is called (a, b)-list (P ,Q)-total colorable if for each list assignment L with |L(x)| = a for all
x ∈ V ∪ E it is possible to choose a subset C(x) ⊆ L(x) with |C(x)| = b for all x ∈ V ∪ E
such that Ti := {x ∈ V ∪E : i ∈ C(x)} belongs to TP,Q for every color i. The (P ,Q)-choice
ratio chrP,Q(G) of G is defined as the infimum of all ratios a/b such that G is (a, b)-list
(P ,Q)-total colorable.

In [4] we prove χ′′
f,P,Q(G) = chrP,Q(G) for all simple graphs G.

In the talk we give an equivalent definition for the fractional (P ,Q)-total chromatic
number χ′′

f,P,Q(G) and use that definition to construct bounds for the (P ,Q)-total chromatic
number for some properties P and Q. These bounds are also valid for the (P ,Q)-choice ratio
because of the mentioned result.

For example, with S = {H ∈ I : H consists of stars} and L = {H ∈ I : H consists of paths}
we obtain in [4]:
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Theorem 1 If P ⊇ O1, and Kn 6∈ P, and S ⊆ Q ⊆ D1 or L ⊆ Q ⊆ D1, and n ≥ 3 then

χ′′
f,P,Q(Kn) =

n(n+ 1)

2(n− 1)
.

Theorem 2 Let Cn be a cycle on n ≥ 3 vertices. Then

χ′′
f,D1,D1

(Cn) =
2n

n− 1
= 2 +

2

n− 1
.

We will give some more recent results and discuss interesting problems related to this
topic.
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Extended Abstract

Let G be a graph, G = (V (G), E(G)), and let S ⊆ V (G). We say that S dominates G if
every vertex x ∈ V (G) \ S has a neighbour in S. The set S dominates G efficiently if every
vertex x ∈ V (G) is either in S or has precisely one neighbour in S. The existence of an
efficient dominating set can be used to determine the dominance number, i.e., the minimum
size of a dominance set. For instance, if G is a regular graph of degree r which admits an
efficient dominating set, then its dominance number is |V (G)|/(r + 1).

Möbius ladder Mn is a cubic graph obtained from the cycle on 2n vertices by adding a
perfect matching connecting pairs of opposite vertices. Using an algebraic approach based
on lifts we prove that, a connected cubic graph G on 2m vertices does not admit efficient
dominating set if and only if m ≥ 3 and G is isomorphic to the Möbius ladder M2m−1 , [1].
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Extended Abstract

The well-known line graph operator maps graph G to the graph L(G) whose vertices
represent the edges (K2-subgraphs) of G and two vertices in L(G) are adjacent if and only
if the corresponding edges share a vertex (a K1-subgraph) in G. The more general notion
of k-line graphs was also introduced and studied (see e.g., [7, 4]). For a positive integer k,
the k-line graph Lk(G) of G has vertices corresponding to the Kk-subgraphs of G and two
vertices in Lk(G) are adjacent if and only if the Kk-subgraphs represented share exactly k−1
vertices. The 1-line graph of a graph of order n is exactly the complete graph Kn; 2-line
graph means line graph in the usual sense; a 3-line graph is also called “triangle graph".

The structural and algorithmic properties of k-line graphs have been studied recently by
the present authors in [3], from where Theorems 1, 2 and 3 below are quoted.

First, answering a question of Bagga [4], we characterize graphs G and F whose Cartesian
product is a triangle graph:

Theorem 1 For two non-edgeless graphs G and F , the Cartesian product G�F is a triangle
graph if and only if G is a complete graph and F is the line graph of a K3-free graph (or
vice versa).

For k ≥ 4, the product of two non-complete graphs can also yield a k-line graph, for
instance the grid graph Pn�Pm is a k-line graph for every n,m and k ≥ 4. Hence, the con-
dition that at least one of G and F is complete is not necessary. The following generalization
of Theorem 1 gives a necessary and sufficient condition for every k.

Theorem 2 For every k ≥ 2, the product G�F of two non-edgeless connected graphs is a
k-line graph if and only if there exist positive integers k1 and k2 such that G is the k1-line
graph of a Kk1+1-free graph, F is the k2-line graph of a Kk2+1-free graph and k1 + k2 ≤ k
holds.

Another issue is the recognition problem of k-line graphs. That is, a positive integer
k is fixed, and an instance graph G of the problem is given. We have to decide whether
there exists a graph G′ whose k-line graph is isomorphic to G. For k = 1 the recognition is
trivial. For k = 2, as well-known, line graphs can be recognized in polynomial time, based
on the forbidden subgraph characterization of Beineke [5]. Also linear-time algorithms were
designed for solving this problem [6, 8]. In sharp contrast to these results, we have proved
that the recognition problem of k-line graphs is NP-complete for each fixed k ≥ 3.

Theorem 3 The following problems are NP-complete for every fixed k ≥ 3:

(i) Recognizing k-line graphs.

(ii) Deciding whether a given graph is the k-line graph of a Kk+1-free graph.

Moreover, both problems remain NP-complete on the class of connected graphs.
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NP-hardness for k = 3 is reduced from that of recognizing “triangular line graphs" (usu-
ally termed Anti-Gallai graphs) recently proved by Anand et al. [1]. Then, for larger values
of k, we apply Theorem 2 in our reduction.

It is worth noting that there is a further jump between the behavior of 2- and 3-line
graphs, which likely is in connection with the jump concerning time complexity. Namely,
this further difference is in the uniqueness of preimages. As a matter of fact, each connected
2-line graph different from K3 has a unique preimage if we disregard isolated vertices. In
other words, viewing the situation from the side of preimages, the line graphs of two non-
isomorphic graphs containing no isolated vertices and no K3-components surely are non-
isomorphic. The similar statement is not true for 3-line graphs, even if we suppose that
every edge and every vertex of the preimage is contained in a triangle. For example, there
are five non-isomorphic graphs whose triangle graph is the 8-cycle. Additionally, the number
of essentially different preimages of an n-cycle goes to infinity as n → ∞ [2].
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Extended Abstract

The minimum feedback vertex set (MFVS) problem for directed graph is one of those
considered by Karp in his famous paper of 1972 [4]. Given a directed graph G = (V,E),
recall that a feedback vertex set is a subset S of V such that each circuit of G is covered by S.
In other words, S is a subset of vertices such that the subgraph G′ of G induced by V −S is
acyclic. The MFVS problem is known to be NP-hard for general classes of graphs [4], even
in its versions for undirected graphs or for sets of arcs instead of vertices. It has been studied
extensively and has numerous applications in electronics, computers-aided design, deadlock
prevention, programming verification and Bayesian inference [1]. Recently, we have shown
that it is a graph-theorical formulation of a fundamental linguistic problem called symbol
grounding problem [2], which consists in finding minimum sets of words in a dictionary such
that we may learn all remaining words starting from these initial sets. It is well-known that
the number of minimum feedback vertex sets may be exponential in the size of the graph [3].
Therefore, one might wonder whether efficient data structures exist for storing all solutions
in the case of particular classes of graphs.

In [1, 3], the authors consider the problem of finding one MFVS. For example, Lin and
Jou introduced the concept of contractible graphs, that reduce to the empty graph under
the application of eight contraction operators [1]. In particular, one can compute a MFVS
in polynomial time whenever the initial graph is contractible and otherwise, they suggest a
branch-and-bound algorithm based on their reduction operators. On the other hand, Formin
et al. propose another algorithm to compute a MFVS for undirected graphs in O(1.7548n)
by transforming the problem into that of finding maximum induced trees [3]. Finally, in [5],
Formin et al. provide an algorithm for enumerating all minimal (inclusion-wise) feedback
vertex sets with polynomial delay. To our knowledge, this is the only known non trivial
algorithm related to the enumeration of MFVS’s.

In this short communication, we propose an algorithm that enumerates all MFVS’s
(cardinality-wise), as well as a convenient data structure for representing them. As a first
step, we restrict our attention on contractible graphs. Our algorithm is based on a branch-
and-bound approach as well as the reduction operators of Lin and Jou [1]. Indeed, it turns
out that 7 of 8 operators may be naturally extended to keep track of all solutions. More
precisely, let G = (V,E) be a directed graph (see Figure 14(a)).

Given v ∈ V , we say that v is essential if it belongs to every MFVS of G. Similarly,
v is called useless if it does not belong to any MFVS. At each step of the algorithm, we
efficiently compute essential and useless vertices. On one hand, we remove essential vertices
and add them to the current solution. On the other hand, useless vertices are removed while
connecting each predecessor with each successor. Next we apply two operators introduced in
[1] that act on edges only. When the graph is reduced as much as possible (see Figure 14(b)),
we can branch according to any remaining vertex, by including or excluding it from the
current partial MFVS. Also, whenever it is possible, we break the problem into smaller
parts according to the connected components of the graph, which speeds up significantly the
computations.
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Since the number of solutions is very large, it is convenient to use a regular expression to
represent all the solutions. For instance, a regular expression describing every MFVS of the
graph of Figure 14(a) is represented as a tree in Figure 14(c). This representation presents
many advantages such as generating efficiently random MFVS’s with uniform probability,
iterating over all solutions with constant delay, compute the number of solutions in which
each vertex appears and verify whether a given set is a MFVS or not.

1

2

34

5 6

7

8

9

0

(a) A directed graph

1

2

34

5 6

7

(b) The directed graph obtained after reduction

∗

9 ∪

∗ ∗

3 ∪ 2, 4, 7 ∪

∗ ∗ 1 5

1, 6 2, 5 ∪∪

7 65 4

(c) A tree representing all six solutions

Figure 14: An example. In (c), ‘∪’ represents the union operator and ‘∗’ represents the
concatenation operator, while the leaves are sets of vertices.
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Extended Abstract

A particular case of Caccetta-Häggkvist conjecture, says that a digraph of order n with
minimum out-degree at least 1

3n contains a directed cycle of length at most 3. In a recent
paper, Kral, Hladky and Norine (see [2]) proved that a digraph of order n with minimum
out-degree at least 0.3465n contains a directed cycle of length at most 3 (which currently
is the best result). A weaker particular case says that a digraph of order n with minimum
semi-degree at least 1

3n contains a directed triangle. In a recent paper (see [3]), by using
the result of [2], the author proved that for β ≥ 0.343545, any digraph D of order n with
minimum semi-degree at least βn contains a directed cycle of length at most 3 (which
currently is the best result). This means that for a given integer d ≥ 1, every digraph with
minimum semi-degree d and of order md with m ≤ 2.91082, contains a directed cycle of
length at most 3. In particular, every oriented graph with minimum semi-degree d and of
order md with m ≤ 2.91082, contains a directed triangle. In this paper, by using again
the result of [2], we prove that every oriented graph with minimum semi-degree d, of order
md with 2.91082 < m ≤ 3 and of strong connectivity at most 0.679d, contains a directed
triangle. This will be implied by a more general and more precise result, valid not only
for 2.91082 < m ≤ 3 but also for larger values of m. As application, we improve two
existing results. The first result (Authors Broersma and Li in [1]), concerns the number
of the directed cycles of length 4 in a possibly triangle free oriented graph of order n and
of minimum semi-degree at least n

3 . The second result (Authors Kelly, Kühn and Osthus
in [4]), concerns the diameter of a triangle free oriented graph of order n and of minimum
semi-degree at least n

5 .
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Extended Abstract

A proper coloring of a graph is an assignment of colors to the vertices of the graph so
that adjacent vertices receive different colors. Graph coloring is an important topic in graph
theory and has wide applications in scheduling and partitioning problems.

Yuster (1998, [13]) introduced the notion of linear coloring, which is a proper coloring
such that each pair of color classes induce a linear forest, where a linear forest is a union
of disjoint paths. This notion combines the well-studied acyclic colorings (which are proper
colorings so that each pair of color classes induce a forest) introduced by Grünbaum (1973,
[6]) and the frugal colorings (a proper coloring is k-frugal if the subgraph induced by each
pair of color classes has maximum degree less than k) introduced by Hind, Molloy, and Reed
(1997, [7]).

We write lc(G) to denote the linear chromatic number of G, which is the smallest integer
k such that G has a linear coloring with k colors. Yuster [13] constructed an infinite family
of graphs such that lc(G) ≥ C1∆(G)3/2, for some constant C1. He also proved an upper
bound of lc(G) ≤ C2∆(G)3/2, for some constant C2 and for sufficiently large ∆(G).

As most coloring problems, it is hard in general to determine the linear chromatic number.
For example, Esperet, Montassier, and Raspaud [5] proved that deciding whether a bipartite
subcubic graph is linearly 3-colorable is an NP-complete problem. On the other hand, there
are some easy upper and lower bounds on lc(G) for every graph G. Let G be a graph with
maximum degree ∆(G). Then lc(G) ≥ ⌈∆(G)/2⌉+1, since each color can appear on at most
two neighbors of a vertex of maximum degree, and lc(G) ≤ χ(G2) ≤ ∆(G2)+1 ≤ ∆(G)2+1,
where χ(G) denotes the chromatic number of G, and G2 is the graph obtained from G by
adding edges xy for each pair of vertices x, y with distance two. Li, Wang, and Raspaud [9]
improved the easy upper bound to lc(G) ≤ (∆(G)2 +∆(G))/2.

For every family of lists (L(v) : v ∈ V (G)) of size k, we say that a proper coloring f is a
proper L-coloring of G if f(v) ∈ L(v) for every vertex v of G. General list-coloring was first
introduced by Erdös, Rubin, and Taylor [4] and independently by Vizing [12] in the 1970s,
and it has been well-explored since then [8].

The list-version of linear coloring was first studied by Esperet, Montassier, and Ras-
paud [5]. We say that a proper L-coloring of G is linear if the subgraph of G induced by
each two color classes is a linear forest. A graph G is linearly k-choosable if for every family
of lists (L(v) : v ∈ V (G)) of size k, the graph G has a linear L-coloring. When all the lists
are the same, it is the same as linear k-coloring. We denote by lcl(G) the smallest k so that
G is linearly k-choosable.

Clearly, lcl(G) ≥ lc(G). Substantial work has been done on the study of graphs whose
linear (list) chromatic number is close to the easy lower bound ⌈∆/2⌉+1, see [1, 2, 3, 5, 9, 10].
On the other hand, a little more is known when a graph has small maximum degree. Li,
Wang, and Raspaud [9] showed that lc(G) ≤ 8 if ∆(G) ≤ 4 and lc(G) ≤ 14 if ∆(G) ≤ 5.
Esperet, Montassier, and Raspaud [5] proved that lcl(G) ≤ 9 if ∆(G) ≤ 4 and lcl(G) ≤ 5 if G
is subcubic (i.e., ∆(G) ≤ 3). Note that K3,3 is not linearly 4-colorable, so their upper bound
on subcubic graph is tight, but they conjectured K3,3 is the only subcubic graph which is
not linearly 4-choosable. In this paper, we confirm this conjecture. Note that not only the
linearly 4-choosability but also the linearly 4-colorability of general subcubic graphs was not
known. As a matter of fact, we prove the following slightly stronger result.

We say that a linear L-coloring is superlinear if the neighbors of every vertex of degree
two receive different colors. We say that a graph G is superlinearly k-choosable if it is
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linearly k-choosable in such a way that the corresponding linear coloring can be chosen to
be superlinear.

Theorem 1 Let G be a subcubic graph which has no component isomorphic to K3,3 or C5.
Then G is superlinearly 4-choosable.

Note that C5 is linearly 4-choosable but not superlinearly 4-choosable. In addition, our
proof of Theorem 4 is constructive and yields a linear-time algorithm to find a superlinear
L-coloring when the family of lists (L(v) : v ∈ V (G)) is given. This generalizes an algorithm
of Skulrattanakulchai [11] to acyclically color subcubic graphs with four colors.

Now, we sketch the proof of Theorem 1. We say that G is a minimum counterexample if it
is a subcubic graph without K3,3 or C5 as components and there is a family L of lists of size
k such that G has no superlinear L-coloring, but every subcubic graph with fewer vertices
than G and with no component isomorphic to K3,3 or C5 is superlinearly 4-choosable. First,
we prove that every minimum counterexample is a connected cubic graph which does not
contain K3 or K2,3 as an induced subgraph and is not isomorphic to the Petersen graph.
Second, we prove that every superlinear L-coloring of G − C can be extended to G, where
G is a minimum counterexample and C is a shorest cycle in G. Since the Petersen graph is
not a minimum counterexample, the subgraph obtained from any minimum counterexample
by deleting a shortest cycle has a superlinear L-coloring for every family of lists of size k.
Therefore, no minimum counterexample exists. This finishes the outline of the proof.
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Extended Abstract

Let m be a positive integer and let G be a graph. An [m]-covering of G is a set M =
{M1, . . . ,Mk} of matchings (1-regular subgraphs) of G, each of size m, such that ∪k

i=1Mi =
E(G), where E(G) denotes the edge-set of G. We will say a graph [m]-coverable if G admits
an [m]-covering. An [m]-covering of smallest order will be called excessive [m]-factorization
of G and the order of any excessive [m]-factorization of G will be denoted by χ′

[m](G) and
called excessive [m]-index. We set χ′

[m](G) = ∞ if G is not [m]-coverable.
First we show that the excessive [m]-index is strictly related to outstanding conjectures

of Berge, Fulkerson and Seymour and we propose a new conjecture of the same type.
Then we summarize the results obtained for the case in which m is small.

Matchings of large size
An outstanding conjecture of Berge and Fulkerson is usually states as follows: for each

bridgeless cubic graph G there exist six perfect matchings of G with the property that each
edge of G is contained in exactly two of them. It is straightforward that the Berge-Fulkerson
conjecture implies the existence of five perfect matchings covering the edge-set of G; it is
sufficient to select five of the six perfect matchings. I have recently proved in [7] that an
equivalent formulation of the Berge-Fulkerson conjecture is the following:

Conjecture 1 Let G be a bridgeless cubic graph of order 2n. Then, χ′
[n](G) ≤ 5.

Having in mind this result, we have considered in [2] the case in which G is cubic of order
2n and m = n − 1, in other words we consider matchings of size one less than a perfect
matching. We propose the following conjecture:

Conjecture 2 Let G be a cyclically 4-connected cubic graph of order 2n. Then, χ′
[n−1](G) =

4.

There are some large classes of cubic graphs for which the conjecture is verified to be true:
among the others we recall 3-edge-colorable graphs, almost Hamiltonian graphs and graphs
having oddness 2 or 4.
Furthermore, we are able to construct an infinite family of 1-connected cubic graphs for
which the excessive [n− 1]-index is as large as we want.

In the case of r-regular graphs G of order 2n and r > 3, the excessive [n]-index cannot
be bounded by any constant as proved in [8]. Seymour conjectures in [11] that the “right“
condition to put on is about the edge-boundary of odd-sized subsets of the vertex-set. He
defines an r-graph as an r-regular graph such that every odd-sized subset of the vertex-set
has edge-boundary at least r and for this relevant class of graphs proposes a generalization
of the Berge-Fulkerson conjecture. I prove in [9] that also in this case the conjecture can be
stated in terms of the excessive [n]-index of G as follows:

Conjecture 3 Let G be an r-graph of order 2n. Then, χ′
[n](G) ≤ 2r − 1.

I also exhibit a class of r-graphs for which the bound 2r − 1 is reached.

Matchings of small size
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If m is a small integer the more ambitious task of finding a general formula to compute
χ′
[m](G) can be considered. Obviously χ′

[1](G) = |E(G)| and it is easy to prove that χ′
[2](G) =

max{χ′(G), ⌈|E(G)|/2⌉} where χ′(G) denotes the chromatic index of G. The case m = 3 is
completely solved by Cariolaro and Fu in [3]. We need the following definition to state their
result: a set S of edges is a splitting set if no two edges in S belong to the same [m]-matching
of G. We denote by s(G) the maximum cardinality of a splitting set of G.

Theorem 4 Let G be a [3]-coverable graph. Then

χ′
[3](G) = max{χ′(G), ⌈|E(G)|/3⌉, s(G)}

The next step is m = 4: we propose in [10] a general formula to compute this index for
a tree and we suggest a possible generalization of such a formula to compute the excessive
[4]-index of any graph.
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Extended Abstract

All graphs considered here are simple, finite and undirected. If X is a family of graphs, we
say that a graph G is X -free if G does not contain any graph from X as an induced subgraph.
The class of all X -free graphs is denoted Forb(X ). If X is finite and X = {X1, . . . , Xk},
then we also say that G is (X1, . . . , Xk)-free and we write G ∈ Forb(X1, . . . , Xk). In this
context, the graphs in X will be referred to as forbidden induced subgraphs. Specifically, the
graph C = K1,3 is called the claw and graphs in Forb(C) are said to be claw-free.

For x ∈ V (G), the local completion of G at x is the graph G∗
x = (V (G), E(G)∪{uv| u, v ∈

NG(x)}) (i.e., G∗
x is obtained from G by adding to 〈NG(x)〉G all missing edges). A vertex

x ∈ V (G) is said to be eligible if it neighborhood NG(x) induces a connected noncomplete
graph. The closure of a claw-free graph G is the graph cl(G) obtained from G by recursively
performing the local completion operation at eligible vertices, as long as this is possible
(more precisely, there is a sequence of graphs G1, . . . , Gk such that G1 = G, Gi+1 = (Gi)

∗
x,

for some vertex x ∈ V (G) eligible in Gi, i = 1, . . . , k − 1, and Gk = cl(G)). In [3], it was
proved that, for a claw-free graph G,

(i) cl(G) is uniquely determined,
(ii) cl(G) is the line graph of a triangle-free graph,
(iii) cl(G) is hamiltonian if and only if G is hamiltonian.

The behavior of some further path and cycle properties under the closure has also been
studied. It turns out that the closure operation preserves some of these properties (e.g., the
existence of a 2-factor - see [4]), while some other properties (such as e.g. the Hamilton-
connectedness, see [1]) are not necessarily preserved. Consequently, several further closure
concepts have been developed – see e.g., [2], [5] for strengthening of the closure cl(G) for
hamiltonicity, [6] for a closure for 2-factors, or [7] for a closure for Hamilton-connectedness.
All these closure concepts are based on the local completion operation, i.e., the closure of a
graph G is obtained by a series of local completions. The difference is in the definition of
eligibility.

Let C be a subclass of the class of claw-free graphs. We say that C is stable if G ∈ C
implies G∗

x ∈ C, for any x ∈ V (G). If cl is any closure operation based on local completions
(i.e., such that cl(G) is obtained from G by a series of local completions), then a class C
being stable implies cl(G) ∈ C, for any G ∈ C.

For various types of closure operations, stable classes have been studied, and for some of
them complete characterizations are known; however, proofs of these results are lengthy and
technical. In this work, we show a common background for results of this type by identifying
the corresponding concept in the line graph preimages.

Let G be a graph, x ∈ V (G) a vertex of degree at least 2, and let A,B be a partition of
E(x) (i.e., E(x) = A∪B, where A,B are disjoint and nonempty). Let G+

x be the graph with
V (G+

x ) = (V (G) \ {x}) ∪ {x1, x2}, where x1, x2 /∈ V (G) (i.e., x1 and x2 are “new" vertices),
in which for every edge e ∈ E(G) with vertices u, x the graph G+

x contains an edge from u
to x1 if e ∈ A, or from u to x2 if e ∈ B, respectively. We say that G+

x is obtained from G
by splitting of type 1 of the vertex x.

Let e ∈ E(G) be a pendant edge with vertices u, x, dG(x) ≥ 3. We say that a graph
G

+(e)
x is obtained from G by splitting of type 2 of x, if G

+(e)
x is obtained from the graph

(V (G) \ {u}, E(G) \ {e}) by splitting of type 1 of x. (see Fig. 1).
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Figure 1: Vertex splitting

Let Y be a family of graphs. We say that Y is closed under vertex splitting (or briefly
split-closed), if, for any Y ∈ Y and any Y ′ obtained from Y by vertex splitting (of type 1 or
2), Y ′ contains a subgraph Y ′′ ∈ Y.

The following result characterizes families of closed forbidden subgraphs that yield stable
classes (here a cherry is a pair of pendant edges with a common vertex, and we write L(H)
for the line graph of a graph H).

Theorem 1 Let H be the class of all triangle-free and cherry-free graphs and let Y ⊂ H
and X = L(Y). Then the class Forb(C,X ) is stable if and only if Y is split-closed.

In case of finite sets X of forbidden subgraphs, it turns out that two of them are, in a
sense, “default", present in all such sets X (here, a generalized net is the graph obtained by
attaching a path to each vertex of a triangle).

Theorem 2 Let X be a finite family of line graphs of triangle-free and cherry-free graphs
such that Forb(C,X ) is stable. Then X contains a path or a generalized net.

In the case of infinite families of forbidden subgraphs an analogue of Theorem 2 is not
true, as can be seen e.g. by considering the stable class Xk = Forb(C, {Ci}∞i=k) (for any fixed
k ≥ 3); Xk is stable although neither of the forbidden subgraphs is a path or a generalized
net. However, it is still possible to show that each family of forbidden subgraphs that yields
a stable class contains a proper subfamily with the same property.

Theorem 3 Let X be a family of line graphs of triangle-free and cherry-free graphs such that
Forb(C,X ) is stable. Then X contains a subfamily X ′ ⊂ X , X ′ 6= X , such that Forb(C,X \
X ′) is stable, unless |X | = 1 and X contains a path or a generalized net.

We also discuss the technique of stabilizers, which allows to handle unstable classes by
proving that their closure can be included into another (possibly stable) class.
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Extended Abstract

The projective cube of dimension 2k, denoted PC(2k), is the graph obtained from the
hypercube of dimension 2k + 1 by identifying each pair of antipodal vertices. With the
terminology of Cayley graphs, PC(2k) is (Z2k

2 , {e1, e2 . . . , e2k, J}) where the ei’s are the
vectors of the standard basis and J is the all-1 vector.
A homomorphism of a graph G to a graph H is a mapping of V (G) to V (H) which preserves
adjacency. We raised the following question:

Problem 1 Given two integers r ≥ k, what are the minimal subgraphs of PC(2k) to which
every planar graph of odd-girth 2r + 1 admits a homomorphism to?

In this talk, we show that this question, surprisingly captures many well-known theorems
and conjectures such as the four colour theorem, Grötzsch’s theorem, Jeager’s conjecture
and Seymour’s conjecture on edge-coloring of planar graphs. We also show a strong relation
between this question and the development of theories such as edge-coloring, fractional
coloring, circular coloring for the class of planar graphs. The question is also related to a
conjecture on the characterization of binary clutters.
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Extended Abstract

Let k ∈ Q+ be a positive rational number, n ∈ Z+ a positive integer that satisfies kn ∈ Z+

and d ∈ Z+ a positive integer that satisfies 1 ≤ d ≤ n and kd ∈ Z+. Let Y be a set of size n
and Z be a set of size kn. Define G(k, n, d) to be the family of biregular bipartite directed
graphs on the vertex set (Y, Z) (with edges directed from Y to Z) where d+(y) = kd for all
y ∈ Y and d−(z) = d for all z ∈ Z. A random biregular bipartite graph (with parameters
k, n, d) is a graph chosen from G(k, n, d) uniformly at random. The corresponding model of
random graphs is denoted by G(k, n, d).

The case where k = 1 has a special relevance since G(1, n, d) is the family of regular
bipartite graphs of size n and degree d where the edges are canonically oriented from one
stable set to the other. Estimating the size of G(1, n, d) as a function of d and n is a question
that has been studied extensively [2, 4].

On the first part we study the probability of having a perfect matching in an induced
subgraph H of G(k, n, d) and how this probability changes with d.

Theorem 1 Under the assumptions from above, let G ∼ G(k, n, d). Take subsets A ⊆ Y
and B ⊆ Z of size kd and define H := G[A,B] to be the subgraph induced by G on vertex
set (A,B). Then

(i) No perfect matching exists in H whp when kd2

n −log(kd) → −∞ or when d is a constant.

(ii) A perfect matching exists in H whp when kd2

n − log(kd) → +∞.

A random bipartite graph is a bipartite graph on the vertex set (A,B) where edges are
chosen independently of each other with probability p. The model of random bipartite graphs
is denoted by B(n, p). The existence of perfect matchings in random bipartite graphs was
investigated by Erdős and Rényi about fifty years ago. In [1] they showed that if G′ ∼ B(n, p)
and p = logn+c

n , then

Pr(There exists a perfect matching in G’) = (1 + o(1)) exp(−2e−c) .

Theorem 1 is an Erdős–Rényi type result for the induced subgraph H. To make the
similarity between Theorem 1 and the result about random bipartite graphs, as clear as
possible we set k = 1 in the former. The induced subgraph H is somewhat similar to a
random bipartite graph as it has similar properties to G′ ∼ B(d, d/n): The size of the
stables of H is d and edges appear in H with uniform probability d/n. The main difference
is that edges do not appear independently in H , yet the dependence is generally speaking
small. The similarity between H and G′ is reflected by the fact that a perfect matching
exists in both graphs whp when d2/n− log d → +∞.

The main motivation to study the existence of perfect matchings in induced subgraphs
of random biregular bipartite graphs has to do with commutative graphs and Plünnecke’s
inequality. A very comprehensive study of the applications of commutative graphs and
Plünnecke’s inequality can be found in [8]. Here we only present the necessary facts that
relate commutative graphs with Theorem 1.

For any y ∈ Y we denote by Γ(y) = {z ∈ Z : yz ∈ E(G)}. and by Γ−1(z) the inverse
neighbourhood of z ∈ Z.

A directed layered graph G with vertex set X0 ∪X1 ∪ · · · ∪Xh is called commutative if

1. There are edges only between consecutive layers, so that E(Xi, Xj) = ∅ unless j = i+1
for all 0 ≤ i, j ≤ h.
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2. For all 1 ≤ i ≤ h and uv ∈ E(Xi−1, Xi) there exists a perfect matching from Γ(u) to
Γ(v).

3. For all 1 ≤ i ≤ h and uv ∈ E(Xi, Xi+1) there exists a perfect matching from Γ−1(v)
to Γ−1(u).

Plünnecke introduced commutative graphs to study the growth of sumsets [6, 7]. He was
interested in the magnification ratios of graphs,

Di(G) = min
∅6=Z⊆X0

|Γ(i)(Z)|
|Z| ,

for 1 ≤ i ≤ h and Γ(i)(Z) is defined iteratively by Γ(i)(Z) = Γ(Γ(i−1)(Z)). Plünnecke proved
in [6] that if G is a commutative graph, then the sequence Di(G)1/i is decreasing. In [5] it
was shown that the upper bound for Di(G) ≤ D1(G)i is sharp.

We apply a variant of Theorem 1 where B = Γ(y) for some y ∈ A, to give a non-
constructive, and probabilistic in nature, proof of the existence of graphs that are extremal
for Plünnecke’s inequality, answering a question of Gowers.

We form a layered directed graph by “placing random biregular bipartite directed graphs
on top of each other.” This simple construction works when the out-degree is large enough
compared to the size of the bottom layer and the resulting graph is whp commutative.

Theorem 2 Let X0, X1, . . . , Xh be sets with |Xi| = kim. Suppose that d ≥ 2 and for 1 ≤
i ≤ h let Gi := G[Xi−1, Xi] ∼ G(k, ki−1m, d).

Let G be a graph with V (G) = X0 ∪ · · · ∪Xh and E(G) = ∪h
i=1E(Gi). Then

(i) The graph G is not commutative whp when d ≤
√

1
3k

h−2m log(km).

(ii) The graph G is commutative whp when d ≥ 3
√

kh−2m log(km).

The methods we use in the paper are somewhat different to those that appear in the
literature. Our strategy is to mirror the proof for random bipartite graphs of Erdős and
Rényi. The biggest obstacle is dealing with dependencies among the edges. We do this by
repeatedly using three ingredients: the regularity of the degrees, the symmetry of G(k, n, d)
and the idea of switching edges in graphs introduced by McKay in [3].
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Extended Abstract

Consider a simple graph G = (V,E) and its proper edge colouring c with the elements
of the set {1, 2, . . . , k}. We say that c is neighbour set distinguishing (or adjacent strong)
if for every edge uv ∈ E, the set of colours incident with u is distinct from the set of
colours incident with v. Let us then consider a stronger requirement and suppose we wish
to distinguishing adjacent vertices by sums of their incident colours. In both problems the
challenging conjectures presume that such colourings exist for any graph G containing no
isolated edges if only k ≥ ∆(G)+2. We prove that in both problems k = ∆(G)+3col(G)−4,
see [3] (or k = 2∆(G) + col(G) − 1, see [2]) is sufficient. The proofs are based on the
Combinatorial Nullstellensatz, applied in the “sum environment”.

Theorem 1 (Alon [1], Combinatorial Nullstellensatz) Let F be an arbitrary field, and
let P = P (x1, . . . , xn) be a polynomial in F[x1, . . . , xn]. Suppose the degree deg(P ) of
P equals

∑n
i=1 ki, where each ki is a non-negative integer, and suppose the coefficient of

xk1
1 . . . xkn

n in P is non-zero. Then if S1, . . . , Sn are subsets of F with |Si| > ki, there are
s1 ∈ S1, . . . , sn ∈ Sn so that P (s1, . . . , sn) 6= 0.

The following result of Scheim is also crucial for the algebraic part of our approach.

Theorem 2 (Scheim [4]) If P (x1, x2, . . . , xn) ∈ R[x1, x2, . . . , xn] is of degree ≤ s1 + s2 +
. . .+ sn, where s1, s2, . . . , sn are nonnegative integers, then

(

∂

∂x1

)s1 ( ∂

∂x2

)s2

. . .

(

∂

∂xn

)sn

P (x1, x2, . . . , xn)

=

s1
∑

x1=0

. . .

sn
∑

xn=0

(−1)s1+x1

(

s1
x1

)

. . . (−1)sn+xn

(

sn
xn

)

P (x1, x2, . . . , xn).

In fact the identical upper bounds for the size of the colour set (i.e., k ≤ ∆(G)+ 3col(G)− 4
and k ≤ 2∆(G) + col(G) − 1) also hold if we use any set of k real numbers instead of
{1, 2, . . . , k} as edge colours, and the same is true in list versions of the both concepts. In
particular, we therefore obtain that lists of length ∆(G)+14 (∆(G)+13 in fact) are sufficient
for planar graphs.
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Sen Sagnik

Univ. Bordeaux, LaBRI, UMR5800, F-33400 Talence, France.
CNRS, LaBRI, UMR5800, F-33400 Talence, France.

Extended Abstract

An oriented graph ~G is a directed graph obtained by replacing each edge uv of a simple
graph G with an arc (ordered pair of vertices) ~uv or ~vu . The graph ~G is an orientation of
G and G is the underlying graph of ~G, denoted by und(~G). We denote by V (~G) and A(~G)
respectively the set of vertices and arcs of ~G. Similarly, V (G) and E(G) denote respectively
the set of vertices and edges of G. The set of all vertices adjacent to a vertex v in a graph
is the set of neighbours and is denoted by N(v). For oriented graphs, if there is an arc ~uv,
then u is an in-neighbour of v and v is an out-neighbour of u. The sets of all in-neighbours
and out-neighbours of v are denoted by N−(v) and N+(v) respectively. A path obtained by
two consecutive arcs ~uv and ~vw is called a 2-dipath. In this article, by graph we will mean
either a simple undirected graph or an oriented graph.

An oriented k-colouring [1] of an oriented graph ~G is a mapping f from the vertex set
V (~G) to the set {1, 2, ...., k} such that, (i) f(u) 6= f(v) whenever u and v are adjacent and
(ii) if ~xy and ~uv are two arcs in ~G, then f(x) = f(v) implies f(y) 6= f(u). The oriented
chromatic number χo(~G) of an oriented graph ~G is the smallest integer k for which ~G has an
oriented k-colouring. An oriented clique or simply oclique is an oriented graph whose any
two distinct vertices are either adjacent or connected by a 2-dipath. Ocliques are therefore
precisely those oriented graphs ~G for which χo(~G) = |~G| = |V (~G)|. Note that an oriented
graph with an oclique of order n as a subgraph has oriented chromatic number at least n,
where the order of a graph G is the number of its vertices, denoted by |G|.

For the family P of planar graphs we have 17 ≤ χo(P) ≤ 80 where the lower bound is due
to Marshall [4] and the upper bound to Raspaud and Sopena [2]. Tightening these bounds
are challenging problems in the domain of oriented colouring. A naturally related question
to this problem is: What is the maximum order of a planar oclique? In order to find the
answer to this question, Sopena [5] found a planar oclique of order 15 while Klostermeyer
and MacGillivray [6] showed that there is no planar oclique of order more than 36 and
conjectured that the maximum order of a planar oclique is 15. The similar question for
planar ocliques with given girth, where the girth of a graph is the length (number of edges)
of the smallest cycle in the graph is also of interest and was asked by Klostermeyer and
MacGillivray [6]. In this paper we manage to answer these questions and also settle the
conjecture by proving the following result:

Theorem 1 (a) If ~G is a planar oclique, then |~G| ≤ 15.
(b) If ~G is a planar oclique with girth at least 4, then |~G| ≤ 6.
(c) If ~G is a planar oclique with girth at least 5, then |~G| ≤ 5.
(d) If ~G is a planar oclique with girth at least k, where k ≥ 6, then |~G| ≤ 3.

The distance d(u, v) between two vertices u, v of a graph G is the length (number of edges
or arcs) of a shortest path joining u and v. The diameter of a graph G is the maximum of
d(u, v) taken over all (u, v) ∈ V (G) × V (G). Clearly any oclique has diameter at most 2.

For a graph G, D ⊆ V (G) dominates G if any vertex of G is either in D or adjacent
to a vertex in D. The domination number of a graph G is the minimum cardinality of a
dominating set. Goddard and Henning [3] showed that every planar graph of diameter 2 has
domination number at most 2 except for a particular graph on eleven vertices.

Let ~B be a planar oclique dominated by the vertex v. Sopena [1] showed that any oriented
outerplanar graph has an oriented 7-colouring. Hence let c be an oriented 7-colouring of the
oriented outerplanar graph obtained from ~B by deleting the vertex v. Now for u ∈ Nα(v)
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let us assign the colour (c(u), α) to u for α ∈ {+,−} and the colour 0 to v. It is easy to
check that this is an oriented 15-colouring of ~B. Hence any planar oclique dominated by one
vertex has order at most 15.

Idea of the proof of Theorem 4: Let ~G be a planar oclique with |~G| > 15. Clearly ~G

has diameter 2. Then by the above discussion, the domination number of ~G is 2. Without
loss of generality, we may assume that ~G is triangulated.

We define the partial order 4 for the set of all dominating sets of order 2 of ~G as follows:
for any two dominating sets D = {x, y} and D′ = {x′, y′} of order 2 of ~G, D′ 4 D if and
only if |N(x′) ∩N(y′)| ≤ |N(x) ∩N(y)|.

Let D = {x, y} be a maximal (with respect to 4) dominating set of order 2 of ~G with
C = N(x) ∩N(y).

We will restrict the possible values of |C| for which ~G can be a planar oclique of order
at least 16. In particular, we will show that |C| ≥ 5 and |C| ≤ 6 to force a contradiction.
This will prove Theorem 4(a).

Other parts of the Theorem will follow using the classification of planar graphs with girth
at least 4 and diameter 2 done by Plesník (1975). �
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Lovász ϑ function and products of graphs
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Extended Abstract

Hedetniemi conjectured in 1966 that the chromatic number of a categorical product of
two graphs is equal to the minimum of the chromatic numbers of the two factors. Despite
many efforts, this conjecture is still open. We prove a variant of this where chromatic number
is replaced by a strict vector chromatic number, better known as ϑ(Ḡ), the Lovász’ theta
function of the complement.

Graph homomorphisms and products This is a paper about relation of graph homo-
morphism, graph products, and certain graph parameters defined by semidefinite programs.
We start by defining the required notions.

Let G, H be graphs (by which we mean undirected simple graphs). We call a mapping
f : V (G) → V (H) a graph homomorphism if for every edge uv of G the graph H contains
the edge f(u)f(v). We denote the existence of such homomorphism by G → H . Many
graph theoretic notions have simple expression in terms of homomorphisms, in particular a
graph G is k-colorable if and only if G → Kk.

Let G, H be graphs. We define two graphs with vertex set V (G) × V (H). In the
categorical product G×H tuples (u1, v1) and (u2, v2) are connected by an edge if and only if

u1u2 ∈ E(G) and v1v2 ∈ E(H).
In the Cartesian product G�H tuples (u1, v1) and (u2, v2) are connected by an edge if

and only if
(

u1u2 ∈ E(G) and v1 = v2
)

or
(

u1 = u2 and v1v2 ∈ E(H)
)

.
It is easy to see that G → G�H (and also H → G�H). Indeed, G�H contains copies

of both G and H . A moment’s thought reveals that we have G×H → G and G×H → H .
(This is indeed satisfied in any category and G×H is called categorical product because it
is, in fact, a product in the sense of category theory.) It follows from the above that

χ(G×H) ≤ min{χ(G), χ(H)} (3)

and
χ(G�H) ≥ max{χ(G), χ(H)} . (4)

It is well-known (and simple to prove) that equality holds in (4). Deciding, whether
equality holds in (3) is much harder. However, it is motivated by more reasons than by a
desire to understand the graph product. It was shown that the Burr-Lovász conjecture from
Ramsey theory follows from the following one, conjectured by Hedetniemi [1].

Conjecture 1 (Hedetniemi)

χ(G×H) = min{χ(G), χ(H)}

Lovász’ ϑ̄-function The so-called Lovász ϑ-function (to be defined shortly) started its
existence in [4] as a means to study Shannon capacity of communication channel. It proved
its importance in other ways since. In particular, recent development starting with [2] uses ϑ
(and its variants, such as so-called vector chromatic number) to approximate chromatic
number of graphs.

One important feature, that will not appear directly in this paper, is that ϑ can be
defined using semidefinite programming. This perhaps explains (by means of semidefinite
duality) why there are so many equivalent definitions. Indeed, a very nice introduction to
the topic [3] lists five equivalent formulations. Of these, we will need three.
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Definition 2 Let G be a graph A mapping a : V (G) → Rd (for any integer d) is called an
orthogonal labeling of G iff a(u) · a(v) = 0 whenever uv /∈ E(G)

A mapping s : V (G) → Rd is called strict vector k-coloring if for every vertex v we have
‖s(v)‖ = 1 and s(u) · s(v) = − 1

k−1 whenever uv ∈ E(G).
For a vector x ∈ Rd we define its cost as c(x) = x2

1/‖x‖2.
Next, we introduce the definition of the Lovász’ ϑ(G) function, or, rather, the function

ϑ̄(G) = ϑ(Ḡ) (where Ḡ is the complement of a graph G), as ϑ̄ is the topic of this paper.

Definition 3 Let G be a graph. We define ϑ̄(G) to be the value of any of the following
optimization programs:

min {1
t
: there is an OL a of Ḡ s.t. ∀v : c(av) = t} (5)

min {k : there is a strict k-coloring of G} (6)

max {
∑

v

c(bv) : b is an OL of G} (7)

The following lemma was implicit in many papers about strict vector coloring, it did not
appear to be much appreciated, though.

Proposition 4 Suppose G → H (i.e., there is a homomorphism from G to H). Then

ϑ̄(G) ≤ ϑ̄(H) .

Results In this paper we start our pursuit to study the SDP-type chromatic parameters
in the spirit of chromatic theory of graphs. Namely, we prove a version of Conjecture 1 for ϑ̄.
Perhaps surprisingly, we need to find the value of ϑ̄(G�H) first. So, the following is our
main result.

Theorem 5

ϑ̄(G�H) = max{ϑ̄(G), ϑ̄(H)}
ϑ̄(G×H) = min{ϑ̄(G), ϑ̄(H)}

In this place we want to mention a recent result of Zhu [5] that proves the version of
Hedetniemi conjecture for χf . It is also shown there, that the Burr-Lovász conjecture does
follow from this version. Similarly to that proof, our present proof relies on the fact, that one
can express the studied parameter as a maximum and as a minimum (by means of duality).
It seems that it is the lack of such characterization for χ that makes the original Hedetniemi
conjecture harder.

This research was supported by Karel Janeček Science & Research Endowment (NFKJ)
grant 201201.
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Extended Abstract

Let H be a digraph possibly with loops and D a digraph (possibly infinite) without loops
whose arcs are coloured with the vertices of H (D is an H-coloured digraph). A directed
walk or a directed path W in D is an H-walk or an H-path, respectively, if and only if
the consecutive colors encountered on W form a directed walk in H . A set N ⊆ V(D) is
an H-kernel if no two vertices of N have an H-path between them and any u ∈ V(D)\N
reaches some v ∈ N on an H-path.

Let D be an arc-coloured digraph, in [3] Galeana-Sánchez introduced the concept of
color-class digraph of D, denoted by CC(D), as follows: vertex set of the color-class digraph
are the colors represented in the arcs of D and (i,j) ∈ A(CC(D)) if and only if there exist
two arcs namely (u,v) and (v,w) in D such that (u,v) has color i and (v,w) has color j.

Since V(CC(D)) ⊆ V(H), the main question is: What structural properties of CC(D),
with respect to H , imply that D has an H-kernel?

In this talk we are going to show conditions on the color-class digraph that guarantee
the existence of an H-kernel in infinite digraphs.
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Extended Abstract

We use [1] for terminology and notation not defined here and consider finite and simple
graphs only. If Kn is edge-coloured in a given way and a subgraph H contains no two edges
of the same colour, then H will be called a totally multicoloured (TMC) or rainbow subgraph
of Kn and we shall say that Kn contains a TMC or rainbow H. For a graph H and an integer
n, let f(n,H) denote the maximum number of colours in an edge-colouring of Kn with no
TMC H. The numbers f(n,H) are called anti-ramsey numbers and have been introduced
by Erdős, Simonovits and Sós [2].

We now define rb(n,H) as the minimum number of colours such that any edge-colouring
of Kn with at least rb(n,H) = f(n,H) + 1 colours contains a TMC or rainbow subgraph
isomorphic to H. The numbers rb(n,H) will be called rainbow numbers.

For a given family H of finite graphs ext(n,H) =: max{|E(G)| | H 6⊂ G if H ∈ H}, that
is, let ext(n,H) be the maximum number of edges a graph G of order n can have if it has
no subgraph from H. The graphs attaining the maximum for a given n are called extremal
graphs. The numbers ext(n,H) are called Turán numbers [9].

For a given graph H, let H be the family of all graphs which are obtained by deleting
one edge from H. If G is a graph of order n having no subgraph isomorphic to H, then a
TMC copy of G and one extra colour for all remaining edges (of Kn) has no TMC subgraph
H. Hence, f(n,H) ≥ ext(n,H) + 1. Moreover,

ext(n,H) + 2 ≤ f(n,H) + 1 = rb(n,H) ≤ ext(n,H).

The lower bound is sharp for some graph classes. This has been shown if H is a complete
graph on k ≥ 3 vertices in [6, 8] and if H is a matching with k edges and n ≥ 2k+1 in [3, 8].

Erdős, Simonovits and Sós [2] showed that f(n,H)/
(

n
2

)

→ 1 − 1
d as n → ∞, where

d+1 = min{χ(H−e) | e ∈ E(H)}, and that f(n,H)−ext(n,H) = o(n2). Hence the rainbow
numbers are asymptotically known if min{χ(H− e) | e ∈ E(H)} ≥ 3. If min{χ(H− e) | e ∈
E(H)} ≤ 2, then the situation is quite different.

For cycles the following result (which has been conjectured by Erdős, Simonovits and
Sós [2]) has been shown by Montellano-Ballesteros and Neumann-Lara [7].

Theorem 1 [7] Let n ≥ k ≥ 3. Then rb(n,Ck) = ⌊ n
k−1⌋

(

k−1
2

)

+
(

r
2

)

+ ⌈ n
k−1⌉, where r is the

residue of n modulo k − 1.

Gorgol [4] has considered a cycle Ck with a pendant edge, denoted C+
k , and computed

all rainbow numbers.

Theorem 2 [4]
rb(n,C+

k ) = rb(n,Ck), for n ≥ k + 1.

However, if we add two (or more) edges to a cycle Ck, the situation becomes surprisingly
interesting.

Theorem 3 Let F be a graph of order n ≥ k ≥ 3 containing a cycle Ck. If F has cyclomatic
number v(F ) ≥ 2, then rb(n, F ) has no upper bound which is linear in n.

We first consider the graph D = K4−e, which is called the diamond. This graph contains
a C3 and has cyclomatic number v(D) = 2. Montellano-Ballesteros [5] has shown an upper
bound for the rainbow number of the diamond.
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Theorem 4 [5] For every n ≥ 4,

ext(n, {C3, C4}) + 2 ≤ rb(n,D) ≤ ext(n, {C3, C4}) + (n+ 1).

Using this we can show the following theorem.

Theorem 5 rb(n,D) = Θ(n
3
2 ).

If v(F ) = 1, then the situation is quite different. Let B be the unique graph with 5
vertices and degree sequence (1, 1, 2, 3, 3), which is called the bull. Here we have been able
to compute all rainbow numbers for the bull.

Theorem 6 rb(5, B) = 6 and rb(n,B) = n+ 2 for n ≥ 6.
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Extended Abstract

A digraph D = (V,A) is semicomplete multipartite if whenever there is an arc between
u and v but no arc between u and w, there is an arc between v and w. Equivalently, there
is a partition V1, V2, . . . , Vc of V into independent sets so that every vertex in Vi is adjacent
to every vertex in Vj for i 6= j. In other words semicomplete multipartite digraphs (SMDs)
are a generalization of multipartite tournaments where we allow 2-cycles. A semicomplete
digraph is a SMD where the size of a largest independent set is one.

In 1980 Thomassen [1] gave a complete characterization of weakly hamiltonian connected
tournaments (that is there is a hamiltonian path connecting x and y for all vertex pairs
x, y ∈ D). From this characterization one can derive a polynomial algorithm for finding the
longest [x, y]-path in a semicomplete digraph.

In 1992 in [2] Bang-Jensen, Manoussakis and Thomassen gave a polynomial algorithm
for testing whether a given semicomplete digraph contains an (x, y)-hamiltonian path (that
is a hamiltonian path from x to y). Interestingly, the algorithm cannot be modified to solve
the problem of finding the longest (x, y)-path in a semicomplete digraph and the complexity
of this problem is still open.

Conjecture 1 [3] 1998
There exists a polynomial algorithm for finding the longest (x, y)-path in a semicomplete
digraph.

For multipartite tournaments it is an open problem whether the existence of a hamil-
tonian path between x and y can be decided in polynomial time and the problem is most
likely quite difficult. For instance the hamiltonian cycle problem is known to be polynomially
solvable for semicomplete multipartite digraphs [4], but the algorithm is highly non-trivial.
This makes it interesting to study problems for multipartite tournaments which contain
the abovementioned hamiltonian path problems for tournaments as special cases. We in-
vestigated problems related to the following generalization of hamiltonian paths (cycles) in
tournaments.

A quasi-hamiltonian path (cycle) in a semicomplete multipartite digraph D is a path
(cycle) which visits each maximal independent set (also called a partite set) of D at least
once.

Theorem 2 It is NP-complete to decide whether a semicomplete multipartite digraph con-
tains an (x, y)-quasi-hamiltonian path.

For the subclass of extended semicomplete digraphs (which are obtained from semicom-
plete digraphs by substituting independent sets for vertices) a polynomial algorithm does
exist by reducing the problem to the (x, y)-hamiltonian path problem for semicomplete di-
graphs.

Guo, Lu and Surmacs [5] gave a characterization of weakly quasi-hamiltonian-set-connected
multipartite tournaments thus generalizing a well-known result for tournaments by Thomassen
[1].

The main part of our work was done on weakly quasi-hamiltonicity in SMDs, that is we
investigated the complexity of the following problem.

Problem 3 Decide if a given semicomplete multipartite digraph with vertices x and y con-
tains a quasi-hamiltonian path connecting x and y.
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This further generalizes the problem solved by Thomassen [1]. To get a better under-
standing of the structure of SMDs we started by introducing some lemmas, the first of which
is a generalization of the merging lemma from [2].

Lemma 4 Let D be a semicomplete multipartite digraph with vertices s1, s2, t1 and t2. Then
any pair of an (s1, t1)-path P and an (s2, t2)-path Q with a set of specified vertices X ⊆
V (P )∪V (Q) such that the vertices of X are from distinct partite sets can be quasi-merged

into a single ({s1, s2}, {t1, t2})-path R covering X. Such a quasi-merging can be performed
in O(|V (P ) ∪ V (Q)|) time.

A simple but powerful idea that exploits the high level of adjacency in SMDs and allows
us to merge two paths into one without loosing anything "important". Since we needed poly-
nomial runtimes for most of our results it turned out to be more convenient to reprove some
known results for SMDs or MTs by repeated application of quasi-merging, than analysing
the original proofs runtime would have been.

Our main contribution is a polynomial algorithm.

Theorem 5 There exists an O(|V |28) algorithm that decides if a semicomplete multipartite
digraph contains an [x, y]-quasi-hamiltonian path and finds one if one exists.

This is obviously not best possible in matters of runtime. A better algorithm, based on
a characterization of all digraphs that do not contain an [x, y]-quasi-hamiltonian path, is
available to us, but the characterization and it’s proof are heavily case-based and contain
long passages of technical arguments that do not grant interesting insights.

From our algorithm for the [x, y]-quasi-hamiltonian path problem, it is not difficult to
derive a polynomial algorithm that finds an [x, y]-path maximizing the number of partite
sets intersected.

Finding the longest [x, y]-path in a semicomplete digraph can be done in polynomial
time. Generalizing this to SMDs seems promising.

Conjecture 6 There exists a polynomial algorithm for finding the longest [x, y]-path in a
semicomplete multipartite digraph.

One could also consider a condition between quasi-hamiltonian and hamiltonian and
demand a certain number of vertices from each partite set.

Problem 7 Is there a polynomial algorithm that given an integer k and a semicomplete
multipartite digraph D with vertices x, y and partite sets V1, . . . , Vc, decides whether D has
an [x, y]-path covering at least min{k, |Vi|} vertices from each Vi, i = 1, . . . , c?
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Extended Abstract

We consider circulations on finite (multi-) graphs G = (V,E) with vertex set V and edge
set E. An orientation D of G is an assignment of a direction to each edge, and for v ∈ V ,
D−(v) (D+(v)) is the set of edges whose head (tail) is v. The oriented graph is denoted
by D(G), d−D(G)(v) = |D−(v)| and d+D(G)(v) = |D+(v)| denote the indegree and outdegree
of vertex v in D(G), respectively. The degree of a vertex v of the undirected graph G is
denoted by dG(v) = d+D(G)(v) + d−D(G)(v).

Let ϕ be a function from the edge set E of the oriented graph D(G) = (V,E) into the
real numbers; (D,ϕ) is a nowhere-zero r-flow on G = (V,E), if 1 ≤ ϕ(e) ≤ r − 1, for all
e ∈ E, and

∑

e∈D+(v) ϕ(e) =
∑

e∈D−(v) ϕ(e), for all v ∈ V .
In 1975, Jaeger [1] introduced the concept of a balanced valuation of a graph G. A

balanced valuation on G is a function w from the vertex set V (G) into the real numbers,
such that for all X ⊆ V (G): |∑v∈X w(v)| ≤ |∂G(X)|, where ∂G(X) is the set of edges with
precisely one end in X . The following fundamental theorem of Jaeger shows that circular
flows and balanced valuations are equivalent concepts.

Theorem 1 ([1]) Let r > 2 be a rational number. A multigraph G = (V,E) has a nowhere-
zero r-flow if and only if there is a balanced valuation w of G, such that for each v ∈ V ,
there is an integer kv ≡ dG(v)(mod2) and w(v) = kv

r
r−2 .

There are some long standing open conjectures on nowhere-zero flows on graphs, e.g.

Conjecture 2 ([4]) If G is a bridgeless graph, then G has a nowhere-zero 5-flow.

Conjecture 3 ([5]) If G is a bridgeless graph without 3-edge cuts, then G has a nowhere-
zero 3-flow.

These conjectures were orginally formulated as integer flow problems. Seymour[3] proved,
that every bridgeless graph has a nowhere-zero 6-flow. In the recent years nowhere-zero flows
with rational flow values have been studied and balanced valuations are a quite powerful
tool to prove results. We will give an overview of results on nowhere-zero flows on graphs,
which are proved with the help of balanced valuations.

We first determine the circular flow number Fc(G) (which is the inf{r|(D,ϕ) is a nowhere-
zero r-flow on G}) of some classes of graphs. Let Fc be the set of circular flow numbers of
graphs and Fc

d be the set of circular flow number of d-regular graphs.

Theorem 4 For all k ≥ 1 : Fc
2k = {2} and Fc

2k+1 = (Fc − [2; 2 + 2
2k−1 )) ∪ {2 + 1

k}.

The oddness ω(G) of a bridgeless cubic graph is the minimum number of odd circuits in
a 2-factor of G. We prove

Theorem 5 Let G be a cyclically k-edge connected graph. If k ≥ 5
2ω(G)−3, then Fc(G) ≤ 5,

and if k ≥ 3
2ω(G) + 1, then Fc(G) < 6.

We generalize Jaeger’s concept [2] of nearly nowhere-zero k-flow graphs to circular flows
and show for k-edge connected graphs G (k ≥ 2): (1) If G has an edge e such that Fc(G−e) ≤
(1 − 1/k)r, then Fc(G) ≤ r. (2) If r ≥ 3 is an integer and G has an edge e such that
Fc(G)− e < r, then Fc(G) ≤ r.
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Extended Abstract

A class of graphs is said to be biclique-free if there is an integer t such that no graph in the
class contains Kt,t as a subgraph. Large families of graph classes, such as any nowhere dense
class of graphs or d-degenerate graphs, are biclique-free. We show that various domination
problems are fixed-parameter tractable on biclique-free classes of graphs, when parameter-
izing by both solution size and t. In particular, the problems k-Dominating Set, Con-
nected k-Dominating Set, Independent k-Dominating Set and Minimum Weight
k-Dominating Set are shown to be FPT, when parameterized by t + k, on graphs not
containing Kt,t as a subgraph. With the exception of Connected k-Dominating Set all
described algorithms are trivially linear in the size of the input graph.

❇�✁✂�✄☎✆✝✞✟✆✆

❊✠✁✂☎✡✆✡ ☛☞✌☞✂☞✍�✁✎✂ ✏�✑☞✟

❇☞☎✑✡✆✡ ☛✟✆✆✝✒�✡☛✓

❇☞☎✑✡✆✡ ✆✠✌✎✑✔�☞✑

❇☞☎✑✡✆✡ ✍✆✑☎✔

P✂✎✑✎✟

❊✠✁✂☎✡✆✡ ✏�✑☞✟

◆☞✒✓✆✟✆ ✡✆✑✔✆ ❉✆✍✆✑✆✟✎☛✆✡

Figure 15: Inclusion relations between some of the mentioned graph class properties. We
refer to Nesetril and Ossona de Mendez [10] for a more refined view.

The k-dominating set problem is notorious in the theory of fixed-parameter tractability
(see [6, 11, 8] for an introduction to parameterized complexity). It was the first problem to
be shown W [2]-complete [6], and it is hence unlikely to be FPT, i.e. unlikely to have an
algorithm with runtime f(k)nc for f a computable function, c a constant and n the number
of vertices of the input graph. However, by restricting the class of input graphs, say to
planar graphs, we can obtain FPT algorithms [1], even if the problem remains NP-complete
on planar graphs [9]. The parameterized complexity of the dominating set problem has
been heavily studied with the tractability frontier steadily pushed forward by enlarging the
class of graphs under consideration. One such line of improvements for k-dominating set
consists of the series of FPT algorithms starting with planar graphs by Alber et al. [1],
followed by bounded genus graphs by Ellis et al. [7], H-minor free graphs by Demaine et
al. [5], bounded expansion graphs by Nesetril and Ossona de Mendez [10], and culminating
in the FPT algorithm for nowhere dense classes of graphs by Dawar and Kreutzer [4]. See
Figure . Alon and Gutner [2] have shown that k-dominating set on d-degenerate graphs
parameterized by k + d is FPT. A relation between the different graph class properties can
be seen in Figure .

In this paper, we push the tractability frontier forward by considering the above variants
of k-dominating set on t-biclique free graphs and showing that they are FPT when parame-
terized by k + t. Our algorithms are simple and rely on results from extremal graph theory
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that bound the number of edges in a t-biclique free graph. Bollobás in his book “Extremal
Graph Theory” discusses the so called Zarankiewicz Problem of giving an upper bound for
the number of edges in graphs where Ks,t is forbidden as a subgraph for integers s, t, and
the following proposition, which he attributes to Kövari, Sós and Turán, turns out to be
very useful when studying graphs without Ks,t as a subgraph.

Proposition 1 (Bollobás VI.2) For integers s, t let G = (V1, V2, E) be a bipartite graph
not containing Ks,t as a subgraph where |V1| = n1 and |V2| = n2. Then for 2 ≤ s ≤ n2 and

2 ≤ t ≤ n1 we have that |E| < (s− 1)
1
t (n2 − t+ 1)n

1− 1
t

1 + (t− 1)n1.

A famous open problem in parameterized complexity is the question if there is an FPT
algorithm deciding if a graph G is k-biclique-free and we briefly mention this open problem
in light of our algorithms.
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